DIABLO-16 Internal Functions
Introduction
The 4D Labs family of embedded graphics processors are powered by a highly optimised soft-core virtual engine, E.V.E. (Extensible Virtual Engine). EVE was designed and created by 4D Labs in the early 2000’s and should not be confused by FTDI’s solution of EVE, which was developed a decent decade or so later.
EVE is a proprietary, high performance virtual processor with an extensive byte-code instruction set optimised to execute compiled 4DGL programs. 4DGL (4D Graphics Language) was specifically developed from ground up for the EVE engine core. It is a high-level language which is easy to learn and simple to understand yet powerful enough to tackle many embedded graphics applications.
4DGL is a graphics-oriented language allowing rapid application development. An extensive library of graphics, text and file system functions and the ease of use of a language that combines the best elements and syntax structure of languages such as C, Basic, Pascal, etc. Programmers familiar with these languages will feel right at home with 4DGL. It includes many familiar instructions such as IF..ELSE..ENDIF, WHILE..WEND, REPEAT..UNTIL, GOSUB..ENDSUB, GOTO
as well as a wealth of (chip-resident) internal functions that include SERIN, SEROUT, GFX_LINE, GFX_CIRCLE
and many more.
This document covers the internal (chip-resident) functions available for the DIABLO-16 Processor. This document should be used in conjunction with the 4DGL Programmers Reference Manual.
Internal Functions Summary
DIABLO-16 Internal functions can be categorized based on usage as listed below:
- C Type Functions
- CRC Functions
- Display I/O Functions
- FAT16 File Functions
- Flash Memory Functions
- Floating Point Functions
- General Purpose Functions
- GPIO Functions
- Graphics Functions
- I2C Master Functions
- Image Control Functions
- Math Functions
- Media Functions
- Memory Allocation Functions
- Miscellaneous System Functions
- Serial (UART) Functions
- Sound Control Functions
- SPI Control Functions
- SPI Flash Functions
- String Class Functions
- System Memory Functions
- Text and String Functions
- Timer Functions
- Touch Screen Functions
- Widget Functions
C Type Functions
isdigit
Tests the character parameter and returns a 1 if the character is an ASCII digit else returns a 0. Valid range: "0123456789".
Syntax: isdigit(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Return: 0 if character is not as ASCII digit, 1 if character is an ASCII digit.
Example
func main()
var ch;
var stat;
gfx_Cls();
txt_Set(FONT_ID, FONT2);
print("Serial Input Test\n");
print("Downloading prog to flash\n");
print("Then use debbug terminal\n");
to(COM0); print("serial input test:\n");
// now just stay in a loop
repeat // maybe replace
ch := serin();
if (ch != 1)
print( [CHR] ch ); // if a key was received from PC,
// print its ascii value
if (isdigit(ch)) print("Character is an ASCII digit");
if (isxdigit(ch)) print("Character is ASCII Hexadecimal");
if (isupper(ch)) print("Character is ASCII uppercase letter");
if (islower(ch)) print("Character is ASCII uppercase letter");
if (isalpha(ch)) print("Character is an ASCII uppercase or lowercase");
if (isalnum(ch)) print("Character is an ASCII Alphanumeric");
if (isprint(ch)) print("Character is a printable ASCII");
if (isspace(ch)) print("Character is a space type character");
endif
forever // this as well
endfunc
isxdigit
Tests the character parameter and returns a 1 if the character is an ASCII hexadecimal digit else returns a 0. Valid range: "0123456789ABCDEF".
Syntax: isxdigit(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not as ASCII hexadecimal digit, 1 if characted is an ASCII hexadecimal digit.
Example: Refer to isdigit Example
isupper
Tests the character parameter and returns a 1 if the character is an ASCII upper case letter else returns a 0. Valid range: "ABCDEF....WXYZ".
Syntax: isupper(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not as ASCII upper case letter, 1 if characted is an ASCII upper case letter.
Example: Refer to isdigit Example
islower
Tests the character parameter and returns a 1 if the character is an ASCII lower case letter else returns a 0. Valid range: "abcd....wxyz".
Syntax: islower(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not as ASCII lower case letter, 1 if characted is an ASCII lower case letter.
Example: Refer to isdigit Example
isalpha
Tests the character parameter and returns a 1 if the character is an ASCII lower or upper case letter else returns a 0. Valid range : "abcd....wxyz", “ABCD....WXYZ”
Syntax: isalpha(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not as ASCII lower or upper case letter, 1 if characted is an ASCII lower or upper case letter.
Example: Refer to isdigit Example
isalnum
Tests the character parameter and returns a 1 if the character is an ASCII Alphanumeric else returns a 0. Valid range : "abcd....wxyz", “ABCD....WXYZ”, “0123456789”
Syntax: isalnum(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not as ASCII Alphanumeric character, 1 if characted is an ASCII Alphanumeric character.
Example: Refer to isdigit Example
isprint
Tests the character parameter and returns a 1 if the character is a printable ASCII character else returns a 0. Valid range : 0x20... 0x7F
Syntax: isprint(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not a printable ASCII character, 1 if characted is a printable ASCII character.
Example: Refer to isdigit Example
isspace
Tests the character parameter and returns a 1 if the character is any one of the space type character else returns a 0. Valid range : space, formfeed, newline, carriage return, tab, vertical tab.
Syntax: isspace(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: 0 if character is not a space type character, 1 if characted is a space type character.
Example: Refer to isdigit Example
toupper
Tests the character parameter and if the character is a lower cases letter, it returns the upper case equivalent else returns the passed char. Valid range: "abcd ... wxyz".
Syntax: toupper(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: The upper case equivalent else returns the passed char.
Example
func main()
var ch, Upconvch, Loconvch, stat;
gfx_Cls();
txt_Set(FONT_ID, FONT2);
print ("Serial Input Test\nDownload prog to flash\n");
print ("Then use debug terminal\n");
to(COM0); print("serial input test:\n");
repeat // now just stay in a loop
ch := serin();
if (ch != 1) // if a key was received from PC,
print([CHR]ch); // print its ascii value
if (isupper(ch))
print("Uppercase ASCII found. Converting to lowercase");
Loconvch := tolower(ch);
endif
if (islower(ch))
print("Lowercase ASCII found. Converting to Uppercase");
Upconvch := toupper(ch);
endif
endif
forever
endfunc
tolower
Tests the character parameter and if the character is a lower case letter it returns the upper case equivalent else returns the passed char. Valid range: "ABCD ... WXYZ".
Syntax: toupper(char);
Arguments | Description |
---|---|
char | Specifies the ASCII character for the test. |
Returns: The lower case equivalent if characters are upper case else returns the passed char.
Example
Refer to toupper Example
LObyte
Returns the lower byte (lower 8-bit) of a 16-bit variable.
Syntax: LObyte(var);
Arguments | Description |
---|---|
var | User variable. |
Returns: The lower byte (lower 8-bit) of a 16-bit variable.
Example
HIbyte
Returns the upper byte (upper 8-bits) of a 16-bit variable.
Syntax: HIbyte(var);
Arguments | Description |
---|---|
var | User variable. |
Returns: The upper byte (upper 8-bit) of a 16-bit variable.
Example
ByteSwap
Returns the swapped upper and lower bytes of a 16-bit variable.
Syntax: ByteSwap(var);
Arguments | Description |
---|---|
var | User variable. |
Returns: Returns the endian swapped value of a 16-bit variable.
Example
NybleSwap
Returns the swapped lower bytes nybles, upper byte retained.
Syntax: NybleSwap(var);
Arguments | Description |
---|---|
var | User variable. |
Returns: Returns the 16-bit variable with swapped lower nybles.
Example
CRC Functions
The CRC functions are mainly designed for serial communications, but are implemented in such a way that they can be used to other things as well. The com_TXblock and com_RXblock commands can be used to assist with reading and writing comm ports, generating and checking CRCs with the minimum of user data manipulation.
crc_16
Calculates the Checksum CRC using the ‘standard’ 16-bit CRC algorithm. For the standard test string "123456789", crc_16 will return 0xBB3D. Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00
Syntax: crc_16(buf, count);
Argument | Description |
---|---|
buf | Source memory buffer. This is a string pointer. |
count | Number of bytes to be used to generate the CRC. |
Returns: The generated 16-bit CRC.
Example
crc_CCITT
Calculates the Checksum CRC as a ‘standard’ CRCITT checksum. For the standard test string "123456789", crc_CCITT with seed = 0 (XMODEM protocol) will return = 0x31C3, for seed = 0xFFFF, the result will be 0x29B1 and for seed = 0x1D0F, the result is 0xE5CC.
Syntax: crc_CCITT(buf, count, seed);
Argument | Description |
---|---|
buf | Source memory buffer. This is a string pointer. |
count | Number of bytes to be used to generate the CRC. |
seed | The seed for the CRC generation. |
Returns: The generated CCITT CRC.
Example
crc_CSUM_8
Calculates the Checksum CRC as an 8-bit number. This is equivalent to simple addition of all bytes and returning the negated sum an 8-bit value.
For the standard test string "123456789", crc_CSUM_8 will return 0x0023. Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00
Syntax: crc_CSUM_8(buf, count);
Argument | Description |
---|---|
buf | Source memory buffer. This is a string pointer. |
count | Number of bytes to be used to generate the CRC. |
Returns: The generated 8-bit checksum CRC.
Example
crc_MODBUS
Calculates the Checksum CRC as per the MODBUS standard.
For the standard test string "123456789", crc_MODBUS will return 0x4B37. Note if you calculate all of the incoming data INCLUDING the CRC, the result should be 0x00
Syntax: crc_MODBUS(buf, count);
Argument | Description |
---|---|
buf | Source memory buffer. This is a string pointer. |
count | Number of bytes to be used to generate the CRC. |
Returns: The generated MODBUS CRC.
Example
Display I/O Functions
These functions allow direct display access for fast blitting operations.
disp_SetReg
Sets the Display driver IC register.
Syntax: disp_SetReg(register, data);
Arguments | Description |
---|---|
register | Refer to the display driver datasheet |
data | Refer to the display driver datasheet |
Returns: None
disp_setGRAM
Prepares the GRAM area for user access. The lower 16bits of the pixel count in the selected area is returned. This is usually all that is needed unless GRAM area exceeds 256^2. A copy of the 32bit value can be found in GRAM_PIXEL_COUNT_LO and GRAM_PIXEL_COUNT_HI.
Syntax: disp_setGRAM(x1, y1, x2, y2);
Arguments | Description |
---|---|
x1, y1 | Top left of the GRAM window. |
x2, y2 | Bottom right of the GRAM window. |
Returns: The LO word of the 32-bit pixel count is returned.
Example
disp_WrGRAM
Data can be written to the GRAM consecutively using this function once the GRAM access window has been setup.
Syntax: disp_WrGRAM(colour);
Arguments | Description |
---|---|
colour | Pixel color to be populated. |
Returns: None
Example
disp_WriteControl
Sends a 16-bit value to the display bus. Refer to individual data sheets for the display for more information. This function is used to extend the capabilities of the user code to gain access to the display hardware.
Syntax: disp_WriteControl(value);
Arguments | Description |
---|---|
value | Specifies the 16-bit value to be written to the display control register. |
Returns: None
Example
disp_WriteWord
Sends a 16-bit value to the display bus. Refer to individual data sheets for the display for more information. This function is used to extend the capabilities of the user code to gain access to the the display hardware.
Syntax: disp_WriteWord(value);
Arguments | Description |
---|---|
value | Specifies the value to be written to the display data register. |
Returns: None
Example
disp_ReadWord
Read a word from the display.
Syntax: disp_ReadWord();
Returns: 16-bit value in the register.
Example
disp_Disconnect
This function disconnects the display driver pins and/or reconfigures it to achieve its lowest possible power consumption. Use after disabling peripheral power to ensure the minimal power usage by the display.
Syntax: disp_Disconnect();
Returns: None
Note
disp_Init() should be used to reinitialise the display.
disp_Init
This function is used to initialise the display. This is useful in a number of situations, however mainly for the uLCD-xx-PTU modules which have the ability to disable the power supply to the display for low power sleep modes. This function is required to re-initialise the display once power to the display has been restored, so the display is usable once again. New in v0.7 PmmC
Syntax: disp_Init();
Returns: None
disp_BlipPixelsFromCOMn
This function writes the number of pixels defined by the last disp_setGRAM() call to the display from the specified com port. The function returns once all pixels have been written.
New in v1.1 PmmC
Syntax: disp_BlitPixelsFromCOM0();
or disp_BlitPixelsFromCOM1();
or disp_BlitPixelsFromCOM2();
or disp_BlitPixelsFromCOM3();
Return: None
FAT16 File Functions
file_Error
Returns the most recent error code or 0 if there were no errors.
File Error Codes
Error Code | Value | Description |
---|---|---|
FE_OK | 0 | IDE function succesded |
FE_IDE_ERROR | 1 | IDE command execution error |
FE_NOT_PRESENT | 2 | CARD not present |
FE_INVALID_MBR | 4 | MBR sector invalid signature |
FE_PARTITION_TYPE | 3 | WRONG partition type, not FAT16 |
FE_INVALID_BR | 5 | Boot Record invalid signature |
FE_DISK_NOT_MNTD | 6 | Media not mounted |
FE_FILE_NOT_FOUND | 7 | File not found in open for read |
FE_INVALID_FILE | 8 | File not open |
FE_FAT_EOF | 9 | Fat attempt to read beyond EOF |
FE_EOF | 10 | Reached the end of file |
FE_INVALID_CLUSTER | 11 | Invalid cluster value > maxcls |
FE_DIR_FULL | 12 | All root dir entry are taken |
FE_DISK_FULL | 13 | All clusters in the partition are taken |
FE_FILE_OVERWRITE | 14 | A file with same name exist already |
FE_CANNOT_INIT | 15 | Cannot init the CARD |
FE_CANNOT_READ_MBR | 16 | Cannot read the MBR |
FE_MALLOC_FAILED | 17 | Malloc could not allocate the FILE struct |
FE_INVALID_MODE | 18 | Mode was not r.w. |
FE_FIND_ERROR | 19 | Failure during FILE search |
FE_INVALID_FNAME | 20 | Invalid Filename |
FE_INVALID_MEDIA | 21 | bad media |
FE_SECTOR_READ_FAIL | 22 | Sector Read fail |
FE_SECTOR_WRITE_FAIL | 23 | Sector Write fail |
Syntax: file_Error();
Returns: Error Code
Example
file_Count
Returns number of files found that match the criteria. The wild card character '*'matches up with any combination of allowable characters and '?' matches up with any single allowable character. Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.
Syntax: file_Count(filename);
Arguments | Description |
---|---|
filename | Name of the file(s) for the search (passed as a string). 8.3 Format |
Returns: Number of files that match the criteria.
Example
file_Dir
Streams a string of file names that agree with the search key. Returns number of files found that match the criteria. The wild card character '*' matches up with any combination of allowable characters and '?' matches up with any single allowable character. Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.
Syntax: file_Dir(filename);
Arguments | Description |
---|---|
filename | Name of the file(s) for the search (passed as a string). 8.3 Format |
Returns: Number of files that match the criteria.
Example
file_FindFirst
Returns true if at least 1 file exists that satisfies the file argument. Wildcards are usually used so if file_FindFirst returns true, further tests can be made using file_FindNext(); to find all the files that match the wildcard class. Note that the stream behaviour is the same as file_Dir. Filename must be 8.3 format. Long Filenames are not supported. TESTPR~1.4XE for example.
Syntax: file_FindFirst(fname);
Arguments | Description |
---|---|
fname | Name of the file(s) for the search (passed as a string). 8.3 Format |
Return: 1 If at least one file exists that satisfies the criteria. 0 If no file satisfies the criteria.
Example
file_FindNext
Returns true if more file exists that satisfies the file argument that was given for file_FindFirst. Wildcards must be used for file_FindFirst, else this function will always return zero as the only occurrence will have already been found. Note that the stream behaviour is the same as file_Dir.
Syntax: file_FindNext();
Returns: 1 if more files exist that satisfy the criteria set in the file_FindFirst(fname). 0 if no more files satisfy the criteria set in the file_FindFirst(fname)
Example
file_Exists
Tests for the existence of the file provided with the search key. Returns TRUE if found. fname must be 8.3 format, and therefore in capital letters. TESTPR~1.4XE for example.
Syntax: file_Exists(fname);
Arguments | Description |
---|---|
fname | Name of the file(s) for the search (passed as a string). 8.3 Format |
Return: 1 if File found. 0 if File not found.
Example
file_Close
Returns TRUE if file closed, FALSE if not.
Syntax: file_Close();
Arguments | Description |
---|---|
fname | the file handle that was created by file_Open("fname") which is now used as reference (handle) for "fname" for further file functions such as in this function to close the file. |
Returns: True (1) if file closed, False (0) otherwise.
Example
file_Open
Returns handle if file exists. The file "handle" that is created is now used as reference for "filename" for further file functions such as file_Close(handle), etc. For FILE_WRITE
and FILE_APPEND
modes ('w'
and 'a'
) the file is created if it does not exist.
If the file is opened for append and it already exists, the file pointer is set to the end of the file ready for appending, else the file pointer will be set to the start of the newly created file.
If the file was opened successfully, the internal error number is set to 0 (i.e. no errors) and can be read with the file_Error() function.
For FILE_READ
mode ('r'
) the file must exist else a null handle (0) is returned and the 'file not found' error number is set which can be read with the file_Error() function.
Syntax: file_Open(fname, mode);
Arguments | Description |
---|---|
fname | Name of the file(s) for the search (passed as a string). 8.3 Format |
mode | FILE_READ ('r' ), FILE_WRITE ('w' ) or FILE_APPEND ('a' ) |
Returns: Handle if file exists. Sets internal file error number accordingly (0 if no errors).
Example
Note
- If a file is opened for write mode 'w', and the file already exists, the operation will fail. Unlike C and some other languages where the file will be erased ready for re-writing when opened for writing, 4DGL offers a simple level of protection that ensures that a file must be purposely erased before being re-written.
- Beginning with the v4.0 PmmC a file opened with FILE_APPEND may be randomly read and or written. Also any altered file will have the Archive bit set in the directory entry.
file_Read
Reads the number of bytes specified by size from the file referenced by handle into a destination memory buffer. Destination is always a word pointer, as you can only read into RAM which is word addressable. If destination is zero, data is read direct to GRAM window.
Syntax: file_Read(*destination, size, hanlde);
Arguments | Description |
---|---|
destination | Destination memory buffer. Word Pointer. |
size | Number of bytes to be read |
handle | The handle that references the file to be read. |
Returns: Number of characters read.
Example
file_Seek
Places the file pointer at the required position in a file that has been opened in 'r'
(read) or 'a'
(append) mode. In append mode, file_Seek does not expand a filesize, instead, the file pointer (handle) is set to the end position of the file, e.g.:- assuming the file size is 10000 bytes, file_Seek(handle, 0, 0x1234); will set the file position to 0x00001234 (byte position 4660) for the file handle, so subsequent data may be read from that position onwards with file_GetC(...), file_GetW(...), file_GetS(...), or an image can be displayed with file_Image(...). Conversely, file_PutC(...), file_PutW(...) and file_PutS(...) can write to the file at the position. A FE_EOF (end of file error) will occur if you try to write or read past the end of the file.
Syntax: file_Seek(handle, HiWord, LoWord);
Arguments | Description |
---|---|
handle | The handle that references the file |
HiWord | Contains the upper 16bits of the memory pointer into the file |
LoWord | Contains the lower 16bits of the memory pointer into the file |
Returns: TRUE if ok, usually ignored.
Example
file_Index
Places the file pointer at the position in a file that has been opened in 'r'
(read) or 'a'
(append) mode. In append mode, file_Index does not expand a filesize, instead, the file pointer (handle) is set to the end position of the file, e.g.:- assuming the record size is 100 bytes, file_Index(handle, 0, 100, 22); will set the file position to 2200 for the file handle, so subsequent data may be read from that position onwards with file_GetC(...), file_GetW(...), file_GetS(...), or an image can be displayed with file_Image(...). Conversely, file_PutC(...), file_PutW(...) and file_PutS(...) can write to the file at the position. A FE_EOF (end of file error) will occur if you try to write or read past the end of the file.
Syntax: file_Index(handle, Hisize, LoSize, recordnum);
Arguments | Description |
---|---|
handle | The handle that references the file. |
Hisize | Contains the upper 16bits of the size of the file records. |
LoSize | Contains the lower 16bits of the size of the file records. |
recordnum | The index of the required record. |
Returns: TRUE if ok, usually ignored.
Example:
file_Tell
Reads the 32-bit file pointer and stores it into 2 variables, HiWord and LoWord
Syntax: file_Tell(handle, &HiWord, &LoWord);
Arguments | Description |
---|---|
handle | The handle that references the file. |
HiWord | Contains the upper 16bits of the memory pointer into the file. |
LoWord | Contains the lower 16bits of the memory pointer into the file |
Returns: TRUE if ok, usually ignored.
Example:
file_Write
Writes the number of bytes specified by "size" from the source buffer into the file referenced by "handle". The source buffer is a byte/string pointer, as it can be written from program memory which is always byte addressable.
Syntax: file_Write(*source, size, handle);
Arguments | Description |
---|---|
source | Source memory buffer. Byte/String Pointer. |
size | Number of bytes to be written. |
handle | The handle that references the file to write. |
Returns: The number of bytes written.
Example
file_Size
Reads the 32-bit file size and stores it into 2 variables, HiWord and LoWord.
Syntax: file_Size(handle, &HiWord, &LoWord);
Arguments | Description |
---|---|
handle | The handle that references the file. |
HiWord | Contains the upper 16bits of the file size. |
LoWord | Contains the lower 16bits of the file size. |
Returns: TRUE if ok, usually ignored.
Example
file_Image
Display an image from the file stream at screen location specified by x, y(top left corner). If there is more than 1 image in the file, it can be accessed with file_Seek(...).
Syntax: file_Image(x, y, handle);
Arguments | Description |
---|---|
x | X-position of the image to be displayed |
y | Y-position of the image to be displayed |
handle | The handle that references the file containing the image(s) |
Returns: A copy of the file_Error() error code
Example
file_ScreenCapture
Save an image of the screen shot to file at the current file position.
The image can later be displayed with file_Image(...); The file may be opened in append mode to accumulate multiple images. Later, the images can be displayed with file_Seek(...).
All image headers must start on a sector boundary.
The image is saved from x, y (with respect to top left corner), and the capture area is determined by "width" and "height".
Syntax: file_ScreenCapture(x, y, width, height, handle);
Arguments | Description |
---|---|
x | X-position of the image to be captured |
y | Y-position of the image to be captured |
width | Width of the area to be captured. |
height | Height of the area to be captured. |
handle | The handle that references the file to store the image(s) |
Returns: Zero (0) if function successful.
Example
file_Mount();
hFile := file_Open("test.img", 'a'); // open a file to save the image
file_ScreenCapture(20,20,100,100, hFile);// save an area
file_ScreenCapture(0,0,50,50, hFile); // (save another area)
file_Close(hFile); // now close the file
// and to display the saved area(s)
hFile := file_Open("test.img", 'r'); // open the saved file
file_Image(20,180, hFile); // display the image
file_Image(150,180, hFile); // (display the next image)
file_Close(hFile);
file_Unmount(); // finished with file system
Note
The image will be sector aligned.
file_PutC
This function writes the byte specified by "char" to the file, at the position indicated by the associated file-position pointer and advances the pointer appropriately (incremented by 1). The file must be previously opened with 'w'
(write) or 'a'
(append) modes.
Syntax: file_PutC(char, handle);
Arguments | Description |
---|---|
char | Data byte about to be written. |
handle | The handle that references the file to be written to. |
Returns: True if function succeeded
Example
file_GetC
This function reads a byte from the file, at the position indicated by the associated file-position pointer and advances the pointer appropriately (incremented by 1). The file must be previously opened with 'r'
(read) mode.
Syntax: file_GetC(handle);
Arguments | Description |
---|---|
handle | The handle that reference the file. |
Returns: The next char from the file.
Example
file_PutW
This function writes word sized (2 bytes) data specified by "word" to the file, at the position indicated by the associated file-position pointer and advances the pointer appropriately (incremented by 2). The file must be previously opened with 'w'
(write) or 'a'
(append) modes.
Syntax: file_PutW(word, handle);
Arguments | Description |
---|---|
word | Date about to be written. |
handle | The handle that reference the file to be written to. |
Returns: True if function succeeded.
Example
file_GetW
This function reads a word (2 bytes) from the file, at the position indicated by the associated file-position pointer and advances the pointer appropriately (incremented by 2). The file must be previously opened with 'r'
(read) mode.
Syntax: file_GetW(handle);
Arguments | Description |
---|---|
handle | The handle that reference to the file. |
Returns: The next word in the file.
Example
file_PutS
This function writes an ASCIIZ (null terminated) string from a buffer specified by "*source" to the file, at the position indicated by the associated file-position pointer and advances the pointer appropriately. The file must be previously opened with 'w'
(write) or 'a'
(append) modes.
Syntax: file_PutS(*source, handle);
Arguments | Description |
---|---|
source | A pointer to the string to be written. Word Pointer. |
handle | The handle that references the file to be written to. |
Returns: The number of the characters written (excluding the null terminator).
Example
file_GetS
This function reads a line of text to a buffer (specified by "*string") from a file at the current file position indicated by the associated file-position pointer and advances the pointer appropriately. The file must be previously opened with 'r'
(read) mode.
file_GetS(...) will stop reading when any of the following conditions are true:
a. It has read n-1 bytes (one character is reserved for the null-terminator) b. It encounters a newline character (a line-feed in the compilers tested here) c. It reaches the end of file d. A read error occurs.
The file must be previously opened with 'r'
(read) mode.
Syntax: file_GetS(*string, size, handle);
Arguments | Description |
---|---|
string | Destination buffer, Word Pointer. |
size | The maximum number of bytes to be read from the file. |
handle | The handle that references the file. |
Returns: The number of characters read from file (excluding the null terminator)
Example
Note
Only reads up to "size-1" characters into "string".
file_Erase
This function erases a file on the disk.
Syntax: file_Erase(fname);
Arguments | Description |
---|---|
fname | Name of the file to be erased. |
Returns: True (1) if successful, False (0) otherwise.
Example
file_Rewind
Resets the file pointer to the beginning of a file that has been opened in 'r'
(read), 'w'
, or 'a'
(append) mode.
Syntax: file_Rewind(handle);
Arguments | Description |
---|---|
handle | The handle that references the file. |
Returns: True (1) if successful, False (0) otherwise.
Example
file_LoadFunction
Load a function or program from disk and return a function pointer to the allocation.
The function can then be invoked just like any other function would be called via a function pointer. Parameters may be passed to it in a conventional way. The function may be discarded at any time when no longer required, thus freeing its memory resources.
The loaded function can be discarded with mem_Free(..) Note that any pointer references passed to the child function may not include references to the parents DATA statements or any static string references. Any string or array information must be in the parents global or local memory space. The reason for this is that DATA statements and static strings are contained in the parents CODE segment, and cannot be accessed by the child process.
The callers stack is shared by the loaded function, however any global variables in the loaded function are private to that function.
Syntax: file_LoadFunction(fname.4XE);
Arguments | Description |
---|---|
fname.4XE | Name of the 4DGL application program that is about to be loaded into RAM. |
Returns: A pointer to the memory allocation where the function has been loaded from file which can be then used as a function call.
Example
var titlestring[20];
var textstring[20];
to (titlestring); putstr("My Window Title");
to (textstring); putstr("My Special Message");
popupWindow := file_LoadFunction("popupWindow1.4fn");
if(!popupWindow) goto LoadFunctionFailed; // could not load the function
// then elsewhere in your program
res := popupWindow(MYMODE,titlestring,textstring);
if(res == QUIT_APPLICATION) goto exitApp;
// Later in your program, when popupWindow is no longer required
// for the application
res := mem_Free(popupWindow);
if(!res) goto FreeFunctionFailed; // should never happen if memory not
// corrupted
var fncHandle; // a var for a handle to sliders2.4dg
var slidervals; // reference var to access global vars in sliders.4dg
fncHandle := file_LoadFunction("sliders2.4xe"); // load the function
slidervals := fncHandle & 0x7FFF; // note that memory allocations
// for transient programs are biased with 8000h which must be removed.
slidervals++; // note that all globals start at '1'
slidervals[0] := 25; // set sliders to initial positions
slidervals[1] := 20;
slidervals[2] := 30;
slidervals[3] := 15;
slidervals[4] := 35;
slidervals[5] := 20;
slidervals[6] := 40;
slidervals[7] := 25;
slidervals[8] := 45;
slidervals[9] := 5;
r := fncHandle(); // activate the function
print("Return value = 0x", [HEX] r,"\n");
// print the values, they may have changed
print("Slider 1 ", slidervals[0]," Slider 2 ", slidervals[1],"\n");
print("Slider 3 ", slidervals[2]," Slider 4 ", slidervals[3],"\n");
print("Slider 5 ", slidervals[4]," Slider 6 ", slidervals[5],"\n");
print("Slider 7 ", slidervals[6]," Slider 8 ", slidervals[7],"\n");
print("Slider 9 ", slidervals[8]," Slider 10 ", slidervals[9],"\n");
mem_Free(fncHandle); // done with sliders, release its memory
file_Run
Any memory allocations in the main FLASH program are released, however, the stack and globals are maintained.
If arglistptr is 0, no arguments are passed, else arglistptr points to an array, the first element being the number of additional elements in the array which contain the arguments.
func 'main' in the called program accepts the arguments, if any.
The arguments can only be passed by value, no pointers or references can be used as all memory is cleared before the file is loaded. Refer to file_Exec and file_LoadFunction for functions that can pass by reference.
The disk does not need to be mounted, file_Run automatically mounts the drive.
Syntax: file_Run(fname.4XE, arglistptr);
Arguments | Description |
---|---|
fname.4XE | name of the 4DGL child program to be loaded into RAM and executed. |
arglistptr | pointer to the list of arguments to pass to the new program. |
Returns: The value from main in the called program.
Example
#inherit "4DGL_16bitColours.fnc"
#inherit "FONT4.fnt"
#constant MAXBUTTONS 30 // for now, maximum number of buttons we want
// (also sets maximum number of files we can exec)
#STACK 500
//stack must be large enough to be shared with called program
#MODE RUNFLASH
// This is a 'top down' main program and must be run from FLASH
//-------------------------------------------------------------------// local global variables
//-------------------------------------------------------------------
// NB:- demo assigns all arrays to MAXBUTTONS.
// The arrays could be dynamically assigned to minimise memory usage.
// There is break even point between extra code and smallish arrays.
var keyval; // 0 if no key pressed else 1-n
var filenames; // pointer to byte array that holds the filenames
var buttontexts[MAXBUTTONS]; // pointers into the filenames array
//holds the filenames we use as button text
var vButtonState[MAXBUTTONS];
//button state flag( bit 0 = up:down state)
var vOldButtonState[MAXBUTTONS];
// OLD button state flags (bit 0 = up:down state)
// (we keep 2 copies so we can test for a state change and only redraw when a state change occurs)
var touchX1[MAXBUTTONS]; // touch regions for the buttons
var touchY1[MAXBUTTONS];
var touchX2[MAXBUTTONS];
var touchY2[MAXBUTTONS];
var btnTextColor; // button text colour
var btnBtnColor; // button background colour
var buttoncount; // actual number of buttons created (set by number of *.4XE files we find on drive)
var tempstr[20]; // general purpose string, 40 bytes
#DATA
byte fred 1,2,3,4,5,6,7,8,9,10,11,12
#END
/*===================================================================
Redraw the button matrix. Only draw buttons that have changed state.
The top lef corner of the button matrix is set with the xorg and yorg parameters depending on the font and text string width, the button matrix dynamically resizes.
Parameters:-
maxwidth = rhs from xorg (in pixels) to cause wrap at rhs
maxwidth = maximum matrix width (in pixel units)
buttoncount = number of buttons to display
font = FONT1 to FONT4
xorg:yorg = top left corner of button array
NB:- The touch detect matrix array is updated when any button changes state.
When you need to draw the matrix for the first instance of the matrix, you must
call with mode = 1 to instantiate the buttons.
call with mode = 0 for normal button action.
===================================================================*/
func redraw(var bcount, var font, var xorg, var yorg, var maxwidth, var mode )
var xgap, ygap, n, x1, y1, x2, y2;
xgap := 2;
ygap := 2;
x1 := xorg;
y1 := yorg;
// if first, set all the buttons to the up state
if (mode)
n := 0;
repeat
vButtonState[n]:=UP;
// set all the buttons to inverse state
vOldButtonState[n]:=DOWN;
// so we guarantee they are all drawn in the 'up' state (not pressed)
until(++n >= buttoncount);
endif
// check all the button states, if a change occured, draw the new button state and update the touch detect matrix array
n := 0;
repeat
// if the button state has changed
if ( vButtonState[n] != vOldButtonState[n])
vOldButtonState[n] := vButtonState[n];
// if we already have all the co-ordinates, use them
if (!mode)
x1 := touchX1[n];
y1 := touchY1[n];
x2 := touchX2[n];
y2 := touchY2[n];
endif
// draw the button
gfx_Button( vButtonState[n], x1, y1, btnBtnColor, btnTextColor, font, 1, 1, buttontexts[n] );
// update the touch screen regions only during first build
if (mode)
x2 := gfx_Get(RIGHT_POS);
y2 := gfx_Get(BOTTOM_POS);
touchX1[n] := x1;
touchY1[n] := y1;
touchX2[n] := x2;
touchY2[n] := y2;
// calculate next button position
x1 := x2 + xgap;
if (x1 >= xorg + maxwidth)
x1 := xorg;
y1 := y2 + ygap;
endif
endif
endif
until (++n >= buttoncount);
endfunc
//===================================================================
// do something with the key data
// In this example, we reconstitute the button name to a file name
// by appending ".4XE" and then call the file_Run command to
// run an application.
//===================================================================
func sendkey()
var p;
p := buttontexts[keyval-1];
to(tempstr); str_Printf(&p, "%s.4XE");
txt_Set(TEXT_OPACITY, OPAQUE);
txt_Set(FONT_ID , FONT4);
txt_MoveCursor(3, 0);
print (" ");
if(file_Exists(str_Ptr(tempstr)))
touch_Set(TOUCH_DISABLE); // disable the touch screen
txt_Set(TEXT_COLOUR, ORANGE);
print ("\rRUN: ", [STR] tempstr );// run the required program
pause(500);
gfx_Cls();
file_Run(str_Ptr(tempstr),0); // just run the prog, no args
else
txt_Set(TEXT_COLOUR, RED);
print ("\rFAULT: ", [STR] tempstr ); // run required program
pause(1000);
endif
endfunc
//===================================================================
// convert the touch co-ordinates to a key value
// returns 0 if no key down else return index 1..n of button
//===================================================================
func readKeys(var x, var y)
var n, x1, y1, x2, y2, r;
n := 0;
r := 0;
while (n < buttoncount && !r)
x1 := touchX1[n];
y1 := touchY1[n];
x2 := touchX2[n];
y2 := touchY2[n];
n++;
if (x >= x1 && x < x2 && y >= y1 && y < y2) r := n;
wend
return r;
endfunc
//==================================================================
func main()
var k, n, state, x, y;
var p, s, w, f;
redo:
w := 140;
f := FONT4;
btnTextColor := BLACK;
btnBtnColor := LIGHTGREY;
gfx_Cls();
gfx_Set(BEVEL_WIDTH, 2);
txt_Set(FONT_ID, FONT3);
print("Simple test for file_Run(...);\n");
print("Memory available = ",mem_Heap(),"\n");
if(!file_Mount())
putstr("Disk not mounted");
while(!file_Mount());
else
putstr("Disk mounted\n");
endif
buttoncount := file_Count("*.4xe");
// count all the executable files on the drive
print("4XE File count = ",buttoncount,"\n");
n := buttoncount; // k holds entry count
if (!n)
print("No 4XE executables\n");
// critical error, nothing to run!
repeat forever
endif
filenames := mem_AllocZ(n*13);
// allocate a buffer for the filenames
if(!filenames)
print("Out of memory\n");
// critical error, could not allocate buffer
repeat forever
endif
to(filenames); file_Dir("*.4xe");
// load the filenames array
p := str_Ptr(filenames); // point to the string
//assign array of string pointers and truncate filename extensions
n := 0;
while ( n < buttoncount )
buttontexts[n++] := p; // save pointer to the string
p:=str_Find ( &p , "." ); // find end of required string
str_PutByte(p++,'\0'); // change '.' to \0
p := p + 4; // skip over "4XE\n"
wend
touch_Set(TOUCH_ENABLE); // enable the touch screen
redraw(buttoncount, f, 10, 80, w, 1);
// draw buttons for the first time
// now just stay in a loop
repeat
state := touch_Get(TOUCH_STATUS); // get touchscreen status
x := touch_Get(TOUCH_GETX);
y := touch_Get(TOUCH_GETY);
if(state == TOUCH_PRESSED) // if there's a press
if (keyval := readKeys(x, y))
vButtonState[keyval-1] := DOWN;
// put button in DOWN state
redraw(buttoncount, f, 10, 80, w, 0);
// draw any button down states
endif
endif
if(state == TOUCH_RELEASED)
// if there's a release
if (keyval)
vButtonState[keyval-1] := UP;
// restore the buttons UP state
redraw(buttoncount, f, 10, 80, w, 0);
// draw any button up states
sendkey();
// do something with the key data
keyval := 0;
// because prog(main prog) gave up all its allocations for file_Exec,
// we have lost our file mount info and the directory list so we must
// re-establish these to be able to continue. A better approach to
// ensure total stability for the main program is to reset the system
// with SystemReset()
//==================================
// systemReset() // restart the main program
// or
goto redo; // re-mount disk, reload filenames
//==================================
endif
endif
forever
// mem_Free(filenames);
// no need to release buffer, this prog is in flash and never exits.....
// file_Unmount(); // ditto
endfunc
//===================================================================
file_Exec
This function is similar to file_Run, however, the main program in FLASH retains all memory allocations (e.g. file buffers, memory allocated with mem_Alloc etc).
Returns like a function, current program calling program is kept active and control returns to it.
If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the number of elements in the array.
func 'main' in the called program accepts the arguments.
This function is similar to file_LoadFunction(...), however, the function argument list is passed by pointer, and the memory consumed by the function is released as soon as the function completes.
Syntax: file_Exec(fname.4XE, arglistptr);
Arguments | Description |
---|---|
fname | Filename of the 4DGL child program to be loaded into RAM and executed. |
arglistptr | Pointer to the list of arguments to pass to the new program or 0 if no arguments. |
Returns: The value from main in the called program.
Example
var args[4], l[50] ;
func main()
var i ;
putstr("Mounting...\n"); // must mount uSD for file_Exec
if (!(file_Mount()))
while(!(file_Mount()))
putstr("Drive not mounted...");
pause(200);
gfx_Cls();
pause(200);
wend
endif
for (i := 0; i < sizeof(l); i++) // init array that will be passed
l[i] := i ;
next
args[0] := 2 ; // init arg count
args[1] := 1234 ; // init arg 1, this cannot be changed
args[2] := l ; // init arg 2 to address of l
print("main Program\n" ) ;
i := file_Exec("uSDProg.4fn", args) ;
print("Back in main program\n" ) ;
print("uSD Program returned ", i, "\n") ; // number from return statement
for (i := 0; i < sizeof(l); i++) // find what changed in array
if (l[i] != i) print("l[", i, "] was changed to ", l[i], "\n" ) ;
next
print("Done") ;
repeat
forever
endfunc
func main(var j, var *l) // parameters appear in the normal way
// The * shows that l will be indexed. It
// simply stops the compiler issuing a 'notice'
txt_FGcolour(WHITE);
print("In file_Exec's Program\n") ;
print("Parms=", j, " ", l, "(ptr to l)\n") ; // can't change these
print("Incrementing l[5] to ", ++l[5], "\n") ; // can change these
print("Returning 188\n") ; // can return a value
txt_FGcolour(LIME);
return 188;
endfunc
file_LoadImageControl
Reads a control file to create an image list.
The following are the modes of operation
Mode | Description |
---|---|
0 | It is assumed that there is a graphics file with the file extension "fname2.gci". In this case, the images have been stored in a FAT16 file concurrently, and the offsets that are derived from the "fname1.dat" file are saved in the image control so that the image control can open the file (.gci) and use file_Seek(...) to get to the position of the image which can then automatically be displayed using file_Image(...). Mode 0 builds the image control quickly as it only scans the .dat file for the file offsets and saves them in the relevant entries in the image control. The penalty is that images take longer to find when displayed due to file_Seek(...) overheads. |
1 | It is assumed that there is a graphics file with the file extension "fname2.gci". In this case, the images have been stored in a FAT16 file concurrently, and the offset of the images are saved in the image control so that image file (*.gci) can be mapped to directly. The absolute cluster/sector is mapped so file seek does not need to be called internally. This means that there is no seek time penalty, however, the image list takes a lot longer to build, as all the seeking is done at control build time. |
2 | In this case, the images have been stored in a in a RAW partition of the uSD card, and the absolute address of the images are saved in the DAT file. This is the fastest operation of the image control as there is no seeking or other disk activity taking place. |
3 | This mode is for Flash based 'file system' GCI (GCIF) with integrated DAT and other file types. "fname1" and "fname2" are then the Flash high and low words of the GCIF start location. |
When an image control is loaded, an array is built in RAM. It consists of a 6 word header with the following entries as defined by the constants:
Information | Index |
---|---|
IMG_COUNT | 0 |
IMG_ENTRYLEN | 1 |
IMG_MODE | 2 |
IMG_GCI_FILENAME | 3 |
IMG_DAT_FILENAME | 4 |
IMG_GCIFILE_HANDLE | 5 |
No images are stored in FLASH or RAM, the image control holds the index values for the absolute storage positions on the uSD card for RAW mode, or the cluster/sector position for formatted FAT16 mode.
When an image control is no longer required, the memory can be released with mem_Free();
Syntax: file_LoadImageControl(fname1, fname2, mode);
Argument | Description |
---|---|
fname1 | The control list filename "*.dat". |
fname2 | The image filename "*.gci". |
mode | Determines the mode of operation |
Return: Pointer (handle) to the memory allocation to the image control list that has been created, null (0) if function fails
Example
#inherit "4DGL_16bitColours.fnc"
#constant OK 1
#constant FAIL 0
var p; // buffer pointer
var img; // handle for the image list
var n, exit, r;
//-------------------------------------------------------------------
// return true if screen touched, also sets ok flag
func CheckTouchExit()
return (exit := (touch_Get(TOUCH_STATUS) == TOUCH_PRESSED)); // if there's a press, exit
endfunc
//-------------------------------------------------------------------
func main()
gfx_Cls();
txt_Set(FONT_ID, FONT2);
txt_Set(TEXT_OPACITY, OPAQUE);
touch_Set(TOUCH_ENABLE); // enable the touch screen
print("heap=", mem_Heap(), " bytes\n"); // show the heap size
r := OK; // return value
exit := 0;
if (!file_Mount())
print("File error ", file_Error());
while(!CheckTouchExit());
// just hang if we didnt get the image list
r := FAIL;
goto quit;
endif
print ("WAIT...building image list\n");
// slow build, fast execution, higher memory requirement
img := file_LoadImageControl("GFX2DEMO.dat", "GFX2DEMO.gci", 1);
// build image control, returning a pointer to structure allocation
if (img)
print("image control=",[HEX] img,"\n");
// show the address of the image control allocation
else
putstr("Failed to build image control....\n");
while(CheckTouchExit() == 0);
// just hang if we didnt get the image list
r := FAIL;
goto quit;
endif
print ("Loaded ", img[IMG_COUNT], " images\n");
print ("\nTouch and hold to exit...\n");
pause(2000);
pause(3000);
gfx_Cls();
repeat
n := 0;
while(n < img[IMG_COUNT] && !exit) // go through all images
CheckTouchExit(); // if there's a press, exit
img_SetPosition( img, n, (ABS(RAND() % 240)), (ABS(RAND() % 320))); // spread out the images
n++;
wend
img_Show(img, ALL); // update the entire control in 1 hit
until(exit);
quit:
mem_Free(img); // release the image control
file_Unmount(); // (program must release all resources)
return r;
endfunc
//===================================================================
file_Mount
Starts up the FAT16 disk file services and allocates a small 32 byte control block for subsequent use. When you open a file using file_Open(...), a further 512 + 44 = 556 bytes are attached to the FAT16 file control block. When you close a file using file_Close(...), the 556 byte allocation is released leaving the 32 byte file control block. The file_Mount() function must be called before any other FAT16 file related functions can be used. The control block and all FAT16 file resources are completely released with file_Unmount().
Syntax: file_Mount();
Return: True (1) if successful, False (0) otherwise
Example
if( !file_Mount() )
while(!(file_Mount()))
putstr("Disk not mounted");
pause(200);
gfx_Cls();
pause(200);
wend
endif
file_Unmount
Release any buffers for FAT16 and unmount the Disk File System. This function is to be called to close the FAT16 file system.
Syntax: file_Unmount();
Return: None
Example
file_PlayWAV
Open the wav file, decode the header to set the appropriate wave player parameters and set off the playing of the file as a background process. See Sound Control Functions for additional play control functions.
This function may return the following values if unsuccessful:
Value | Error Description |
---|---|
-7 | Insufficient memory available for WAV buffer and file |
-6 | cant play this rate |
-5 | no data chunk found in first rsector |
-4 | no format data |
-3 | no wave chunk signature |
-2 | bad wave file format |
-1 | file not found |
Syntax: file_PlayWAV(fname);
Argument | Description |
---|---|
fname | Filename of the wav file to be opened and played |
Return: Number of blocks to play (1 to 32767), or error code otherwise.
Example
print("\nding.wav\n");
for (n := 0; n < 45; n++)
pitch := NOTES[n];
print([UDEC] pitch,"\r");
snd_Pitch(pitch);
file_PlayWAV("ding.wav");
while(snd_Playing());
//pause(500);
next
file_Rename
This function renames a file on the disk.
Syntax: file_Rename(oldname, newname);
Argument | Description |
---|---|
oldname | Name of the file to be renamed |
newname | Name of the file to be used as the new name |
Returns: 1 if successful, 0 otherwise.
Example
Note
If the function fails, the appropriate error number is set in file_Error() if an invalid filename is specified, otherwise the cause will be a missing old-name or a pre-existing newname.
file_SetDate
This function sets the modified date and time on an open file handle. The file must be closed at some future time for the date and time to be flushed to disk.
Syntax: file_SetDate(handle, year, month, day, hour, minute, second) ;
Arguments | Description |
---|---|
handle | The handle that reference the file. |
year | The year the file was updated 1980-2099. |
month | The month the file was updated 1 - 12. |
day | The day the file was updated 1 - 31. |
hour | The hour the file was updated 0 - 23. |
minute | The minute the file was uupdated 0 - 59. |
second | The second the file was updated 0 - 59. |
Returns: 1 if successful, 0 otherwise (Handle not valid, or Date/Time not valid).
Example
file_CheckUpdate
Checks and/or updates the program running in Flash using the specified file on uSD.
The following options determine the mode of operation:
Option | Value | Description |
---|---|---|
CHECKUPDATE_QUERY | 1 | Checks the specified file and compares its DateTime to the program running in Flash |
CHECKUPDATE_UPDATENEWER | 2 | Updates the program in Flash if the program on uSD is newer |
CHECKUPDATE_UPDATEALWAYS | 3 | Always updates the program in Flash |
If update occurs and the program is running from Flash, the display is reset after update. Otherwise, if a query or an error occurs, the following is returned:
Option | Value | Description |
---|---|---|
CHECKUPDATE_NEWFILE | 1 | The specified file is newer than the file running in Flash |
CHECKUPDATE_OLDFILE | 2 | The specified file is equal to or older than the file running in Flash |
CHECKUPDATE_UPDATEDONE | 3 | An update was performed, and the program is running from RAM |
CHECKUPDATE_NOFILE | 4 | The specified file does not exist |
CHECKUPDATE_INVALIDFILE | 5 | The specified file is not valid '4xe' or '4fn' |
Syntax: file_CheckUpdate(fname, options);
Argument | Description |
---|---|
fname | Filename of the 4DGL program on the uSD card |
options | Determines whether to update always (3), update if newer (2) or simply query (1) |
Return: Result of the operation
Example
if (!(file_Mount()))
while(!(file_Mount()))
putstr("Drive not mounted...");
pause(200);
gfx_Cls();
pause(200);
wend
endif
if (file_CheckUpdate("Program.4xe", CHECKUPDATE_QUERY) == CHECKUPDATE_NEWFILE)
putstr("Program will now update") ;
file_CheckUpdate("Program.4xe", CHECKUPDATE_UPDATENEWER) ;
endif
Flash Memory Functions
flash_Bank
Identifies which flash bank the code is running from.
Syntax: flash_Bank();
Returns: The FLASH bank that code is currently running from, 0-5.
0: Flashbank_0
1: Flashbank_1
2: Flashbank_2
3: Flashbank_3
4: Flashbank_4
5: Flashbank_5
Example:
flash_Blit1
Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the GRAM mechanism, palette is 2 x 16bit colours
Syntax: flash_Blit1(bank, offset, count, pallete2colour);
Arguments | Description |
---|---|
bank | Flash bank to load the image from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
offset | Offset in to the Flash bank where image is stored. |
count | Total number of pixel in the image. |
pallete2colour | An array of 2 elements being the colors for the two possible colour values. |
Returns: Actual count (normally same as count, will be lower if bank bounds exceeded)
Example
var actual_count;
var pixels := 2000;
// pallete should be defined as an array of 2 elements
// of 16bit color values
actual_count := flash_Blit1(FLASHBANK_2, 10, pixels, pallete);
flash_Blit2
Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the GRAM mechanism, palette is 4 x 16bit colours.
Syntax: flash_Blit2(bank, offset, count, pallete4colour);
Arguments | Description |
---|---|
bank | Flash bank to load the image from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
offset | Offset in to the Flash bank where image is stored. |
count | Total number of pixel in the image. |
pallete4colour | An array of 4 elements being the colors for the four possible colour values. |
Returns: Actual count (normally same as count, will be lower if bank bounds exceeded)
Examples
var actual_count;
var pixels := 2000;
// pallete should be defined as an array of 4 elements
// of 16bit color values
actual_count := flash_Blit2(FLASHBANK_2, 10, pixels, pallete);
flash_Blit4
Blit an image to a GRAM window from FLASH storage. Image is stored in a linear fashion to suit the GRAM mechanism, palette is 16 x 16bit colours.
Syntax: flash_Blit4(bank, offset, count, pallete16colour);
Arguments | Description |
---|---|
bank | Flash bank to load the image from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
offset | Offset in to the Flash bank where image is stored. |
count | Total number of pixel in the image. |
pallete16colour | An array of 16 elements being the colors for the sixteen possible colour values. |
Returns: Actual count (normally same as count, will be lower if bank bounds exceeded)
Examples
var actual_count;
var pixels := 2000;
// pallete should be defined as an array of 16 elements
// of 16bit color values
actual_count := flash_Blit4(FLASHBANK_2, 10, pixels, pallete);
flash_Blit8
Blit an image to a GRAM window from FLASH storage. Image is stored 8-bits per pixel (332 format) in a linear fashion to suit the GRAM mechanism.
Syntax: flash_Blit8(bank, offset, count);
Arguments | Description |
---|---|
bank | Flash bank to load the image from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
offset | Offset in to the Flash bank where image is stored. |
count | Total number of pixel in the image. |
Returns: Actual count (normally same as count, will be lower if bank bounds exceeded)
Examples
flash_Blit16
Blit an image to a GRAM window from FLASH storage. Image is stored 16bits per pixel (565) in a linear fashion to suit the GRAM mechanism.
Syntax: flash_Blit16(bank, offset, count);
Arguments | Description |
---|---|
bank | Flash bank to load the image from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 -1 or ALL to select all the banks. |
offset | Offset in to the Flash bank where image is stored. |
count | Total number of pixel in the image. |
Returns: Actual count (normally same as count, will be lower if bank bounds exceeded)
Examples
flash_Copy
Copies bytes from any flash locations to a user buffer. If the bank is read protected, 0 bytes will be read.
Syntax: flash_Copy(bank, ptr, dest, count);
Arguments | Description |
---|---|
bank | Flash bank to copy the data from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 -1 or ALL to select all the banks. |
ptr | Pointer to a location in the selected flash bank. |
dest | Pointer to the destination. The destination pointer is word aligned. |
count | Count of bytes to be transferred. |
Returns: The count of the bytes transfered.
Example
flash_EraseBank
This function should be used with extreme caution. The selected bank will be completely erased regardless of FLASH_WRITE_PROTECT status if the confirmation value is set to hex 0xDEAD. If confirmation is any other value, a protected bank will not be erased, and function will return with 0 If the destination bank is the same as the execution bank, the processor will reset upon completion of erase. If the "bank" argument is set to ALL (-1) and confirmation is set to 0xDEAD, FLASHBANK_0 through FLASHBANK_5 are cleared.
Note
- Use with caution, this is a good way to 'clean up' the entire flash when starting new projects.
- Reset processor if program is erasing itself, or the ALL bank option is selected.
Syntax: flash_EraseBank(bank, confirmation);
Arguments | Description |
---|---|
bank | Flash bank to be erased. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 -1 or ALL to select all the banks. |
confirmation | 0xDEAD: The command will erase regardless or FLASH_WRITE_PROTECT status. For any other value, a protected bank will not be erased. |
Returns: True if the function succeeded.
Example
flash_Exec
This function calls the main function in another bank. The main program in FLASH retains all memory allocations (e.g. file buffers, memory allocated with mem_Alloc etc.)
The called bank returns like a function, program in current bank is kept active and control returns to it. All memory allocated in the called bank should be freed before returning, or it will be lost.
If arglistptr is 0, no arguments are passed, else arglist points to an array, the first element being the number of elements in the array.
func 'main' in the called bank accepts the arguments.
Syntax: flash_Exec(flashbank, arglistptr);
Arguments | Description |
---|---|
flashbank | Name of the bank to be executed. |
arglistptr | Pointer to the list of arguments to pass to the selected bank or 0 if no arguments. |
Returns: The value from main in the called bank.
Example
flash_GetByte
Reads a single byte from any flash location. If the bank is read protected, only the first 2 bytes can be read.
0x55, 0xAA are the header signature bytes of a valid program.
Syntax: flash_GetByte(bank, ptr);
Arguments | Description |
---|---|
bank | Flash bank to get the byte from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
ptr | Pointer to a location in the selected flash bank. |
Returns: The byte value from the location.
Example
flash_GetWord
Reads a single word from any flash location. If the bank is read protected, only the first word can be read.
0x55AA is the header signature word of a valid program.
Snytax: flash_GetWord(bank, ptr);
Arguments | Description |
---|---|
bank | Flash bank to get the word from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
ptr | Pointer to a location in the selected flash bank. |
Returns: The word value from the location.
Example
flash_LoadFile
Copies a file from uSD to the required flashbank. The destination bank cannot be the execution bank, or a bank that is write protected.
Sytax: flash_LoadFile (bank, filename);
Arguments | Description |
---|---|
bank | Flash bank to load the file from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
filename | Name of the file to be copied (passed as a string). |
Returns: True if the function succeeded
Example
if (flash_LoadFile(FLASHBANK_2, "FILE.TXT"))
print("File loaded to bank.");
else
print("Failed");
endif
flash_putstr
Prints an ASCIIZ string from the Flash bank. Works the same as putstr, however, the source of the ASCIIZ string is in FLASH storage. Output may be redirected with the to(..) function. Bit15 of ptr is assumed 0.
Syntax: flash_putstr(bank, ptr);
Arguments | Description |
---|---|
bank | Flash bank to load the String from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
ptr | Pointer to a NULL terminated string in the selected flash bank. |
Returns: True if function succeeds, usually ignored. 0 if bank is read protected.
Example
flash_Run
Restarts the processor, running code from the required flash bank. Bank may be a variable, or one of the pre-defined constants.
Syntax: flash_Run(bank);
Arguments | Description |
---|---|
bank | Flash bank to load the program from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
Returns: This function should not return as it restarts the processor and jumps to the required bank.
If it does return, - 1 indicates incorrect/invalid bank number. - 2 indicates no valid program in the selected bank.
Example
var status;
status := flash_Run (FLASHBANK_2, 10)
if (status == -1 || status == -2);
print("Failed");
endif
flash_WriteBlock
Copies a 2kbyte buffer to the required flashbank in block 0-15. The destination bank cannot be an execution bank, or a program bank that is write-protected.
Syntax: flash_WriteBlock(sourceptr, bank, page);
Arguments | Description |
---|---|
sourceptr | Source buffer to load the 2K bytes of data from. |
bank | Flash bank to write the block to. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
page | Page number 0-15. Each page is 2K. The address of each block is 0, 2048, 4096 etc, determined by the page number 0-15. |
Returns: True if the function succeeded.
Example
var buffer[100] := "4D Labs Semiconductors";
var status;
if (status := flash_WriteBlock(buffer, FLASHBANK_2, 1))
print("Successfully written to bank");
endif
flash_FunctionCall
Calls the Flashbank passing index "index" as the first parameter.
Other parameters "State", "&FunctionRam", "&FunctionDef", "&FunctionDef" are passed. The second two parameters are passed "as is", since the third parameter is normally in flash and one banks flash is not accessible from another
"FunctionArgCount" constants are copied into a RAM array and passed to the Function. "FunctionStringMap" is a bit array of the indexes containing single and multiple strings offset by 8. e.g. 0x0100 means parameter 8 is a single string, 0x0002 means paramter 9 is an array of strings with parameter 8 containing the count.
Syntax: flash_FunctionCall(bank, idx, state, FncRam, FncDef, FncArgCnt, FncStrMap);
Arguments | Description |
---|---|
bank | Flash bank to write the block to. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
index | Index of the entry in the handle |
state | Value passed to update function state |
&FunctionRam | Pointer to the function RAM allocation |
&FunctionDef | Pointer to the function definitions stored in Flash |
FunctionArgCount | Function argument count |
FunctionArgStringMap | String address array |
Returns: 0 if successful.
Example
flash_LoadSPIflash
Copies a file from uSD to the required flashbank. The destination bank cannot be the execution bank, or a bank that is write protected.
Syntax: flash_LoadSPIflash (bank, hndl, idx);
Arguments | Description |
---|---|
bank | Flash bank to load the file from. 0 or FLASHBANK_0 1 or FLASHBANK_1 2 or FLASHBANK_2 3 or FLASHBANK_3 4 or FLASHBANK_4 5 or FLASHBANK_5 |
hndl | The handle that references the file. |
index | Index of the entry in the handle. |
Returns: True if the function succeeded
Example
result := flash_LoadSPIflash (FLASHBANK_2, "TETRIS10.EXE"); // load the file from disk into FLASHBANK_2
Floating Point Functions
flt_ADD
Performs floating point addition (A+B) and returns the value in the result register.
Syntax: flt_ADD(&result, &floatA, &floatB);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatA | Points to the float value A. |
&floatB | Points to the float value B. |
Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted at run-time by calling flt_Val for a string argument.
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA, "3.3"); // Convert a string ("3.3") to a floatA
flt_ITOF(floatB, 4); //Convert integer "4" to float
flt_ADD(result, floatA, floatB);
gfx_MoveTo(0,0);
print("add: ");
flt_PRINT(result,"%.6f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_SUB
Performs floating point Subtraction (A-B) and returns the value in the result register.
Syntax: flt_SUB(&result, &floatA, &floatB);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatA | Points to the float value A. |
&floatB | Points to the float value B. |
Arguments may be a pointer to a float variable or a numeric text string. A string argument is converted at run-time by calling flt_Val for a string argument.
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA, "3.3"); // Convert a string ("3.3") to a floatA
flt_ITOF(floatB, 4); //Convert integer "4" to float
flt_SUB(result, floatA, floatB);
print("subtract: ");
flt_PRINT(result,"%.6f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_MUL
Performs floating point Multiplication (A * B) and returns the value in the result register.
Syntax: flt_MUL(&result, &floatA, &floatB);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatA | Points to the float value A. |
&floatB | Points to the float value B. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var Voltage[20]; // string to store computed voltage
// values
func main()
var Vsteps; // variable to store conversion
// results
gfx_ScreenMode(LANDSCAPE) ; // landscape orientation
pin_Set( PIN_AN, PA0); // set pin PA0 to be used as an
// analogue input, standard mode
repeat
Vsteps := pin_Read(PA0) ; // 12 bit analogue 0 to 4095
gfx_MoveTo(0, 0) ; // move o rigin to point 0, 108,
//printing will start from this point
print("steps: ", [DEC4Z]Vsteps);// print the number of steps
getVoltage(Vsteps); // compute the equivalent voltage
//value of Vsteps
// result is converted to a string
//and stored in global variable Voltage
gfx_MoveTo(0, 15) ;
print("voltage: ");
putstr(Voltage); // print the computed equivalent
//voltage onscree n
forever
endfunc
func getVoltage(var reading)
var nsteps[2];
var Vref[2];
var Nsteps[2];
var Factor[2];
var Result[2];
flt_VAL(Vref, "3.3"); //Convert a string ("3.3") to a float
// (Vref)
flt_ITOF(Nsteps, 4095); //Convert an integer (4095) to a float
//(Nstep)
flt_DIV(Factor, Vref, Nsteps); //Float divistion, Factor = Vref/Nsteps
flt_ITOF(nsteps, reading); //Convert the integer 'reading' to a
//float 'nsteps'
flt_MUL(Result, nsteps, Fa ctor); //Float multiplication,
//Result = nsteps * Factor
to(Voltage); flt_PRINT(Result, "%.6f");//print formatted Result
//to the global variable Voltage
endfunc
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_DIV
Performs floating point Division (A/B) and returns the value in the result register.
Syntax: flt_DIV(&result, &floatA, &floatB);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatA | Points to the float value A. |
&floatB | Points to the float value B. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
see the example in flt_MUL()
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_POW
Raises A to power B and returns the result value in the result register.
Syntax: flt_POW(&result, &floatA, &floatB);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatA | Points to the float value to raise. |
&floatB | Points to the float value for power. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_ITOF(floatA, 2); // Convert integer "2" to float
flt_ITOF(floatB, 8); // Convert integer "4" to float
flt_POW(result, floatA, floatB);
print("power: ");
flt_PRINT(result,"%.6f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_ABS
Calculates absolute value of the floating point value.
Syntax: flt_ABS(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value to get the Absolute of. |
Return: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE); // landscape orientation
flt_ITOF(floatA, 124); //Convert integer " 124" to float
flt_ABS(result, floatA);
print("absolute value: ");
flt_PRINT(result,"%.2f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_CEIL
Rounds value up to the integer value. Removes fractional part, rounding up correctly.
Syntax: flt_CEIL(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value to integerize up. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"99.678"); //Convertstring "99.678" to float
flt_CEIL(result, floatA);
print(" result : ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_FLOOR
Rounds value down to the integer value. Removes fractional part, rounding down correctly.
Syntax: flt_FLOOR(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value to integerize down. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"99.678"); //Convert string "99.678" to float
flt_FLOOR(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_SIN
Calculates the SINE of float value in radians and returns the value in the result register.
Syntax: flt_SIN(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value angle (in radians) to get the SINE of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"1.5708"); //Convert string "1.5708" to float
flt_SIN(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_COS
Calculates the COSINE of float value in radians and returns the value in the result register.
Syntax: flt_COS(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value angle (in radians) to get the COSINE of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"3.1416"); //Convert string "3.1416" to float
flt_COS(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
flt_TAN
Calculates the TANGENT of float value in radians and returns the value in the result register.
Syntax: flt_TAN(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value angle (in radians) to get the TANGENT of. |
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"3.1416"); //Convert string "3.1416" to float
flt_TAN(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_ASIN
Calculates the ARCSINE of float value and returns the angle in radians in the result register.
Syntax: flt_ASIN(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. Result is in radians. |
&floatval | Points to the float value to get the ARCSINE of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"0.1234"); //Convert string "0.1234" to float
flt_ASIN(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_ACOS
Calculates the ARCCOS of float value and returns the angle in radians in the result register.
Syntax: flt_ACOS(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. Result is in radians. |
&floatval | Points to the float value to get the ARCCOS of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"0.1234"); //Convert string "0.1234" to float
flt_ACOS(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_ATAN
Calculates the ARCTAN of float value and returns the angle in radians in the result register.
Syntax: flt_ATAN(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. Result is in radians. |
&floatval | Points to the float value to get the ARCTAN of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"0.1234"); //Convert string "0.1234" to float
flt_ATAN(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_EXP
Calculates the Exponent of float value and returns the value in the result register.
Syntax: flt_EXP(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value to get the Exponent of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_ITOF(floatA, 5); //convert integer 5 to float
flt_EXP(result, floatA); //result = e^5
print("result: ");
flt_PRINT(result,"%.4f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_LOG
Calculates the Natural Log of float value and returns the value in the result register.
Syntax: flt_LOG(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value to get the natural Log of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"2.718282"); //Convert string "2.718282" to float
flt_LOG(result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_SQR
Calculates the square root of float value and returns the value in the result register.
Syntax: flt_SQR(&result, &floatval);
Arguments | Description |
---|---|
&result | Points to float result register. |
&floatval | Points to the float value to get the square root of. |
Returns: A pointer to the float result register or zero if error occurs. Carry and overflow are not affected.
Example
var floatA[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"16.0"); //Convert string "16.0" to float
flt_SQR (result, floatA);
print("result: ");
flt_PRINT(result,"%.5f");
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_LT
Compare A to B and returns true if A < B.
Syntax: flt_LT(&floatA, &floatB);
Arguments | Description |
---|---|
&floatA | Points to the float value A. |
&floarB | Points to the float value B. |
Returns: True if A < B, false otherwise.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"16.0"); //Convert string "16.0" to float
flt_VAL(floatB,"17.5"); //Convert string "17.5" to float
if(flt_LT(floatA, floatB))
print("floatA is less than floatB\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_EQ
Compare A to B and returns true if equal.
Syntax: flt_EQ(&floatA, &floatB);
Arguments | Description |
---|---|
&floatA | Points to the float value A. |
&floarB | Points to the float value B. |
Returns: True if A == B, false otherwise.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"16.0"); //Convert string "16.0" to float
flt_VAL(floatB,"16.0"); //Convert string "16.0" to float
if(flt_EQ(floatA, floatB))
print("floatA is equal to floatB\n");
else
print("floatA is not equal to floatB\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_NE
Compare A to B and returns true if A != B.
Syntax: flt_NE(&floatA, &floatB);
Arguments | Description |
---|---|
&floatA | Points to the float value A. |
&floarB | Points to the float value B. |
Returns: True if A != B, false otherwise.
Example
var
floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"16.0"); //Convert string "16.0" to float
flt_VAL(floatB,"100.0"); //Convert string "100.0" to float
if(flt_NE(floatA, floatB))
print("floatA is not equal to floatB\n");
else
print("floatA is equal to floatB\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_GT
Compare A to B and returns true if A > B.
Syntax: flt_GT(&floatA, &floatB);
Arguments | Description |
---|---|
&floatA | Points to the float value A. |
&floarB | Points to the float value B. |
Returns: True if A > B, false otherwise.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"16.0"); //Convert string "16.0" to float
flt_VAL(floatB,"100.0"); //Convert string "100.0" to float
if(flt_GT(floatB, floatA))
print("floatB is greater than floatA\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_GE
Compare A to B and returns true if A >= B.
Syntax: flt_GE(&floatA, &floatB);
Arguments | Description |
---|---|
&floatA | Points to the float value A. |
&floarB | Points to the float value B. |
Returns: True if A >=B, false otherwise.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"16.0"); //Convert string "16.0" to float
flt_VAL(floatB,"100.0"); //Convert string "100.0" to float
if(flt_GE(floatB, floatA))
print("floatB is greater than or equal to floatA\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_LE
Compare A to B and returns true if A <= B.
Syntax: flt_LE(&floatA, &floatB);
Arguments | Description |
---|---|
&floatA | Points to the float value A. |
&floarB | Points to the float value B. |
Returns: True if A <= B, false otherwise.
Example
var floatA[2], floatB[2], result[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"160.0"); //Convert string "160.0" to float
flt_VAL(floatB,"100.0"); //Convert string "100.0" to float
if(flt_LE(floatB, floatA))
print("floatB is less than or equal to floatA\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_SGN
Examines sign of the float value and returns 0 if sign is positive or value equals zero. Returns 16bit integer -1 if float sign is negative.
Syntax: flt_SGN(&floatval);
Arguments | Description |
---|---|
&floatval | Points to the float value to examine the sign of. |
Returns: 16bit integer -1 if float sign is negative, or zero if positive.
Example
var floatA[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA,"-100.0"); //Convert string " 100.0" to float
if(flt_SGN(floatA) ==-1)
print("floatA is a negative value\n");
endif
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_FTOI
Converts a floating point number to a 16bit integer. The floating point number is rounded up or down accordingly.
Syntax: flt_FTOI(&floatval);
Arguments | Description |
---|---|
&floatval | Points to the float value to be converted to integer. |
Returns: The integer value of the float.
Example
var floatA[2], result;
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_VAL(floatA," 123.4567"); //Convert string " 123.4567" to float
result := flt_FTOI(floatA);
print("result: ", result,"\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_ITOF
Converts a 16bit signed integer value to a signed floating point number.
Syntax: flt_ITOF(&fresult, var16);
Arguments | Description |
---|---|
&fresult | Points to float result variable. |
var16 | a 16bit signed integer variable. |
Returns: The pointer to the float result, normally ignored.
Example
var floatA[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_ITOF(floatA, 100); //convert integer 100 to float
print("float value: ");
flt_PRINT(floatA,"%.6f"); //prints "100.000000"
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_UITOF
Converts a 16bit unsigned integer value to a positive floating point number.
Syntax: flt_UITOF(&fresult, uvar16);
Arguments | Description |
---|---|
&fresult | Points to float result variable. |
uvar16 | A 16bit unsigned integer variable. |
Returns: The pointer to the float result.
Example
var floatA[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_UITOF(floatA, 50000); //convert integer 50000 to float
print("float value: ");
flt_PRINT(floatA,"%.2f"); //prints "50000.00"
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_LTOF
Converts a 32bit signed integer value to a signed floating point number.
Syntax: flt_LTOF(&fresult, var32);
Arguments | Description |
---|---|
&fresult | Points to float result variable. |
var32 | A 32bit (long) signed variable. |
Returns: The pointer to the float result.
Example
var floatA[2], long Int[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
umul_1616( longInt, 500, 2000); //multiply 500 by 2,000, store
//result (1,000,000) in longInt
flt_LTOF(floatA, longInt); //convert 1,000,000 to a float value
print("float value: ");
flt_PRINT(floatA,"%.2f"); //prints "1000000.00"
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_ULTOF
Converts a 32bit unsigned integer value to a positive floating point number.
Syntax: flt_ULTOF(&fresult, uvar32);
Arguments | Description |
---|---|
&fresult | Points to float result variable. |
uvar32 | A 32bit (long) unsigned variable. |
Returns: The pointer to the float result.
Example
var floatA[2], longInt[2], ptr;
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
umul_1616(longInt, 50000, 50000); //multiply 50,000 by 50,000
//store result (2,500,000,000) in longInt
ptr := str_Ptr(longInt); //create a string pointer for longInt
print("unsigned 32bit value: ");
str_Printf(&ptr,"%lu"); //print the value of longInt
print("\n");
flt_ULTOF(floatA, longInt); //convert longInt to a float value
print("float value: ");
flt_PRINT(floatA,"%.2f"); //prints "2500000000.00"
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_VAL
Converts the number string to a valid float value. Carry and overflow are not affected.
Syntax: flt_VAL(&fresult, numstring);
Arguments | Description |
---|---|
&fresult | Points to float result variable. |
numstring | A string constant or string variable that holds valid floating point number.The string argument can be a string constant, a pointer to a string variable, or a pointer to a data statement.The string may be a float, or a hex or binary integer value (no decimal point allowed). For hex or binary, the number is preceeded with 0x or 0b. |
Returns: The pointer to the float result.
Example
See the example in section flt_ADD.
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_PRINT
Prints a floating point value in a set string format.
The string argument can be a string constant, a pointer to a string variable, or a pointer to a data statement. If it is zero or an empty string, the number is automatically formatted for the best presentation. The format string is similar to the C language, but only a single '%' may be used to print a single variable.
To format the output, refer to the following syntax:
flag | Meaning |
---|---|
- | Left justify. |
+ | Always display Sign. |
space | Display space if there is no sign. |
0 | Pad with leading zeros. |
width specifies the number of characters used in total to display the value. Notice that the width includes the decimal point, and a - sign if there is one.
precision indicates the number of characters used after the decimal point.
specifier | Meaning |
---|---|
f | Float |
e or E | Float exponential Format. |
Syntax: flt_PRINT(&fvalue, formatstring);
Arguments | Description |
---|---|
&fresult | Points to float result variable. |
formatString | zero, null string, of valid format string. |
Returns: ‘0’ if successful.
Example
var floatA[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_ITOF(floatA, 5000); //convert integer 5000 to float
print("float value: ");
print("\n");
//specify format
print(" %f: ");
flt_PRINT(floatA,"%f"); //prints "5000.000000"
//default precision is six 0's after the decimal point
print("\n");
print(" %e: ");
flt_PRINT(floatA,"%e"); //prints "5.000000e+03" (float exponential format)
//default precision is six 0's after the decimal point
print("\n");
//specify precision
print(" %.2f: ");
flt_PRINT(floatA,"%.2f"); //prints "5000.00"
print("\n");
print(" %.1e: ");
flt_PRINT(floatA,"%.1e"); //prints "5.0e+03" (float exponential format)
print("\n");
//specify width and precision
print(" %10.2f: ");
flt_PRINT(floatA,"%10.2f"); //prints " 5000.00",
//a total of 10 characters (including the decimal point)
//left padded with 3 space characters
print("\n");
print(" %10.2e: ");
flt_PRINT(floatA,"%10.2e"); //prints " 5.00e+03",
//a total of 10 characters (including the decimal point)
//left padded with 2 space characters
print("\n");
//specify flag, width, and precision
print(" %010.2f: ");
flt_PRINT(floatA,"%010.2f"); //prints "0005000.00",
//a total of 10 characters (including the decimal point)
//left padded with 3 0's
print("\n");
print(" %010.2e: ");
flt_PRINT(floatA,"%010.2e"); //prints "005.00e+03",
//a total of 10 characters (including the decimal point)
//left padded with 2 0's
print("\n");
print(" %+10.2f: ");
flt_PRINT(floatA,"%+10.2f"); //prints " +5000.00",
//a total of 10 characters (including the decimal point)
//sign is always displayed
//left padded with 2 space characters
print("\n");
print("%+010.2f: ");
flt_PRINT(floatA,"%+010.2f"); //prints "+005000.00",
//a total of 10 characters (including the decimal point)
//left padded with 2 0's
print("\n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
flt_PRINTxy
Prints a floating point value in a set string format at the specified position.
The string argument can be a string constant, a pointer to a string variable, or a pointer to a data statement. If it is zero or an empty string, the number is automatically formatted for the best presentation. The format string is similar to the C language, but only a single '%' may be used to print a single variable.
For more information on the syntax of the format string, refer to section flt_PRINT (&fvalue, formatstring).
Syntax: flt_PRINTxy(x, y, &fvalue, formatstring);
Arguments | Description |
---|---|
x | The x position to start printing the number in. |
y | The y position to start printing the number in. |
&fresult | Points to float result variable. |
formatstring | zero, null string, of valid format string |
Returns: ‘0’ if successfull.
Example
var floatA[2];
gfx_ScreenMode(LANDSCAPE) ; //landscape orientation
flt_ITOF(floatA, 5000); //convert integer 5000 to float
print("float value: ");
print("\n");
//specify format
gfx_MoveTo(36, 16); //move cursor to 36,16
txt_FGcolour(YELLOW); //set text foreground color to yellow
print("%f: ");
txt_FGcolour(LIME); //set text foreground color to lime
flt_PRINTxy(68,16,floatA,"%f"); //prints "5000.000000" at 68,16
print("\n");
gfx_MoveTo(36, 32); //move cursor to 36,32
txt_FGcolour(YELLOW); //set text foreground color to yellow
print("%e: ");
txt_FGcolour(LIME); //set text foreground color to lime
flt_PRINTxy(68,32,floatA,"%e"); //prints "5.000000e+03" at 68,32
print("\n");
//specify precision
gfx_MoveTo(20, 52); //move cursor to 20,52
txt_FGcolour(YELLOW); //set text foreground color to yellow
print("%.2f: ");
txt_FGcolour(LIME);//set text foreground color to lime
flt_PRINTxy(68, 52, floatA,"%.2f");//prints "5000.00" at 68,52
print("\n");
gfx_MoveTo(20, 72); //move cursor to 20,72
txt_FGcolour(YELLOW); //set text foreground color to yellow
print("%.1e: ");
txt_FGcolour(LIME); //set text foreground color to lime
flt_PRINTxy(68, 72, floatA,"%.1e"); //prints "5.0e+03" at 68,72
print( n");
Note
A float variable is a 2 word array, e.g. var myfloat[2]
.
General Purpose Functions
pause
Stop execution of the user program for a predetermined amount of time.
Syntax: pause(time);
Arguments | Description |
---|---|
time | A value specifying the delay time in milliseconds. |
Returns: None
Example
lookup8
Search a list of 8-bit constant values for a match with a search value key. If found, the index of the matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned with zero.
Syntax: lookup8(key, byteConstList);
Arguments | Description |
---|---|
key | A byte value to search for in a fixed list of constants. The key argument can be a variable, array element, expression or constant. |
byteConstList | A comma separated list of constants and strings to be matched against key. |
Returns: The index of the matching constant, otherwise zero.
Example
func main()
var key, r;
key := 'a';
r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);
print(" nSearch value 'a' nfound as index ", r)
key := 5;
r := lookup8(key, 0x4D, "abcd", 2, 'Z', 5);
print("\nSearch value 5 nfound at index ", r)
putstr("\nScanning..\n");
key := -12000; // we will count from 12000 to +12000, only
// the hex ascii values will give a match value
while(key <= 12000)
r := lookup8(key, "0123456789ABCDEF" ); // hex lookup
if(r) print([HEX1] r 1); // only print if we got a match in
// the table
key++;
wend
repeat forever
endfunc
Note
The list of constants cannot be re-directed. The lookup8(...) functions offer a versatile way for returning an index for a given value. This can be very useful for data entry filtering and parameter input checking and where ever you need to check the validity of certain inputs. The entire search list field can be replaced with a single name if you use the $ operator in constant, e.g. :
#constant HEXVALUES $"0123456789ABCDEF"
lookup16
Search a list of 16-bit constant values for a match with a search value key. If found, the index of the matching constant is returned in result, else result is set to zero. Thus, if the value is found first in the list, result is set to one. If second in the list, result is set to two etc. If not found, result is returned with zero.
Arguments | Description |
---|---|
key | A byte value to search for in a fixed list of constants. The key argument can be a variable, array element, expression or constant. |
wordConstList | A comma separated list of constants to be matched against key. |
Returns: The index of the matching constant, otherwise zero
Example
func main()
var key, r;
key := 5000;
r := lookup16(key, 5,10,20,50,100,200,500,1000,2000,5000,10000);
//r := lookup16(key,
if(r)
print("\nSearch value 5000 nfound at index ", r);
else
putstr("\nValue not found");
endif
print("\nOk"); // all done
repeat forever
endfunc
Note
The lookup16(...) functions offer a versatile way for returning an index for a given value. This is very useful for parameter input checking and where ever you need to check the validity of certain values. The entire search list field can be replaced with a single name by using the $ operator in constant, e.g.:
#constant LEGALVALS $5,10,20,50,100,200,500,1000,2000,5000,10000
GPIO Functions
pin_Set
There are pre-defined constants for mode and pin:
4D Pin Name (Predefined) | PA0 | PA1 | PA2 | PA3 | PA4 | PA5 | PA6 | PA7 | PA8 | PA9 | PA10 | PA11 | PA12 | PA13 | PA14 | PA15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DIABLO-16 Pin Number | pin61 | pin62 | pin63 | pin64 | pin46 | pin49 | pin50 | pin51 | pin52 | pin53 | pin43 | pin44 | pin31 | pin32 | pin37 | pin36 |
H1 pin Number | pin 1 | pin 3 | pin 5 | pin 7 | pin 29 | pin 27 | pin 25 | pin 23 | pin 21 | pin 19 | pin 8 | pin 6 | pin 28 | pin 30 | pin 24 | pin 26 |
4D Mode (Predefined) | mode | PA0 | PA1 | PA2 | PA3 | PA4 | PA5 | PA6 | PA7 | PA8 | PA9 | PA10 | PA11 | PA12 | PA13 | PA14 | PA15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PIN_INP | 0 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PIN_INP_HI | 1 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PIN_INP_LO | 2 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PIN_OUT | 3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PIN_OUT_OD | 4 | No | No | No | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
PIN_AN | 5 | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | No | No | No |
PIN_ANAVG | 6 | Yes | Yes | Yes | Yes | No | No | No | No | No | No | No | No | No | No | No | No |
Syntax: pin_Set(mode, pin);
Arguments | Description |
---|---|
mode | A value (usually a constant) specifying the pin operation. |
pin | A value (usually a constant) specifying the pin number. |
Returns: None
Example
pin_Set(PIN _INP , PA0 ); // set PA0 to be an in tput
pin_Set(PIN_AN , PA1 ); // set PA 1 to be an Analog input
pin_Set(PIN _INP_HI, PA4 ); // set PA4 to be an in tput with int. pullup
pin_Set(PIN_INP_LO, PA5); // set PA5 to be an in tput with int. pulldown
pin_Set(PIN _OUT, PA10 ); // set PA10 to be used as an ou tput
pin_Set(PIN_OUT_OD, PA 14); // set PA 1 4 to be an Open Drain Output
pin_Set(PIN _ANAVG, PA0 ); // set PA0 to be an Averaging Analog Input
Note
If using PIN_AN or PIN_ANAVG via the pin_Read() function, then if Touch is enabled this function should be called no more than once per millisecond, otherwise touch behaviour could be erratic.
pin_HI
Set any pin to the HI state, pin is automatically made an output. Pullup, Pulldown, and change notification will be disabled for the selected pin.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: pin_HI(pin);
Arguments | Description |
---|---|
pin | A value (usually a constant) specifying the pin number or a predefined pin name. |
Returns: a Logic 1 (0x0001) if the pin number is legal.
Example
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
pin_LO
Set any pin to the LOW state, pin is automatically made an output. Pullup, Pulldown, and change notification will be disabled for the selected pin.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: pin_LO(pin);
Arguments | Description |
---|---|
pin | A value (usually a constant) specifying the pin number or a predefined pin name. |
Returns: A Logic 1 (0x0001) if the pin number is legal.
Example
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
pin_Val
Outputs a logic state on a pin depending on the value of bit 0 of a variable. The pin is automatically made an output. Pullup, Pulldown, and change notification will be disabled for the selected pins.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: pin_Val(pin, value);
Arguments | Description |
---|---|
pin | A value (usually a constant) specifying the pin number or a predefined pin name. |
value | Bit 0 of value. |
Returns: A Logic 1 (0x0001) if the pin number is legal.
Example
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
pin_Read
Read a pin in various ways. If the pin is set to an input, read the state of the input pin. If set to an output, read the state of the output latch. If set to analogue, read the 12 bit analogue value.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
When using PIN_AN or PIN_ANAVG via the pin_Set command, then please note: If Touch is enabled this function should be called no more than once per millisecond, otherwise touch behaviour could be erratic.
PIN_AN > 15,000 reads/second
PIN_ANAVG ~3,000 reads/second
Syntax: pin_Read(pin);
Arguments | Description |
---|---|
pin | A value (usually a constant) specifying the pin number or a predefined pin name. |
Returns: State of the pin a Logic 0 (0x0001) or 1 (0x0001) if the pin is set to digital input. State of the output latch, a Logic 0 (0x0001) or 1 (0x0001) if the pin is set to digital output. 12 bit analogue value if the pin is set to an analogue pin.
Example
pin_Set(PIN _AN , PA1 ); // set PA 1 to be used as an Analog input
ANval := pin_Read(PA1); // Read the 12bit analog input
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
bus_Read
Read the 16-bit port regardless of pin configurations. If a pin is configured as input or analogue, the pin is read directly as if it were a digital input. If a pin is configured as an output, the pin is also read directly, giving the output latch state.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: bus_Read();
Returns: The 16-bit value of the bus.
Example
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
bus_Read8
Returns the state of the bus as an 8bit value in to the lower byte of the assigned variable.
The BUS_RD pin set to LO, then, after a settling delay of approx 50nsec, the BUS is read into the lower 8-bits of the assigned variable (the upper 8-bits being set to 0) the BUS_RD pin is then set back to a HI level.
Syntax: bus_Read8();
Returns: The state of the 8-bit bus as an 8bit value.
Example
The lower byte of var1 will get loaded with the state of the bus.
Note
The BUS_RD pin must be preset to the desired output state must the bus pins to ensure BUS write integrity.
BUS_RD is PA3
The 8-bit BUS pins 0 to 7 are PA4 to PA11.
bus_Write8
The lower 8-bits of arg1 are placed on the BUS, then, after a settling delay of approx 50nsec, the BUS_WR pin is strobed LO for approx 50nsec then set back HI. The upper 8-bits of arg1 are ignored.
Syntax: bus_Write8(value);
Arguments | Description |
---|---|
Value | The lower 8-bits of value are sent to the 8-bit bus. |
Returns: None
Example
Note
The BUS_WR pin pin must be preset to the desired output state as must the bus pins to ensure BUS write integrity.
BUS_WR is PA2
The 8-bit BUS pins 0 to 7 are PA4 to PA11
bus_SetPins
Any '1' bits in "value" sets the corresponding port pin to an output and forces its state to a '1'. The state of its previous open drain configuration is not altered. Any ‘0’ bits in "value" will not affect the pin. pullup, pulldown, and change notification will be disabled for the selected pins.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: bus_SetPins(value);
Arguments | Description |
---|---|
Value | A value (usually a constant) specifying the pin number. Bit 0 corresponds to PA0 through to bit9 which corresponds to PA9. |
Returns: None
Example
var arg1;
arg1 := 0b0011010; // set desired mask
bus_SetPins(arg1); // set PA 1, PA3 and PA4 to output, making them HI
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
bus_ClearPins
Any '1' bits in "value" sets the corresponding port pin to an output and forces its state to a '0'. The state of its previous open drain configuration is not altered. Any ‘0’ bits in "value" will not affect the pin. pullup, pulldown, and change notification will be disable for the selected pins.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: bus_ClearPins(value);
Arguments | Description |
---|---|
Value | A value (usually a constant) specifying the pin number. Bit 0 corresponds to PA0 through to bit9 which corresponds to PA9. |
Returns: None
Example
var arg1;
arg1 := M_PA1 | M_PA3 | M_PA4 ; // set desired mask (same as
bus_ClearPins(arg1); // set PA 1, PA3 and PA4 to output, making them LO
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
bus_SetChangeInterrupt
Any '1' bits in "portmask" marks that pin to generate an interrupt on change. A level change on that pin will cause "function" to be executed. If "function" is zero, the display may be put into sleep mode, and any change will cause a wakeup reset. Wakeup will always re-start code running in FLASHBANK_0 Bit 0 corresponds to PA0 through to bit15 which corresponds to PA15
Once armed, "function" will only be executed once, it is necessary to re-arm for any further events.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: bus_SetChangeInterrupt(function, portmask);
Arguments | Description |
---|---|
function | Event Function to be queued when an interrupt occurs. |
portmask | "portmask" marks that pin to generate an interrupt on change. A value (usually a constant) specifying the pin number or a predefined pin name. |
Returns: The current state of the pins that are selected in "portmask". This can be saved and later used in "function" to see which pin(s) actually changed.
Example
bus_SetChangeInterrupt(scanKeypad, M_PA4 | M_PA5 | M_PA6 | M_PA7); // set PA4 to PA7 to interrupt on change
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
Qencoder1
Connect a quadrature encoder to a pair of pins, using the predefined 4D Pin Names in the table below, and the PHApin and PHBpin arguments in this function.
It is necessary to configure the pins first, depending on your requirements, e.g.
pin_Set(PIN_INP_HI, PA4); // PA4 as input, with pullup to Vcc
or maybe
pin_Set(PIN_INP, PA4); // PA4 as input, no pullup or pulldown
The position counter and delta can be read or written to at any time with peekW and pokeW using the following constants:
QEN1_COUNTER_LO
QEN1_COUNTER_HI
QEN1_DELTA
(QEN1_DELTA is reset to 0 once it has been read.)
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: Qencoder1(PHApin, PHBpin, mode);
Arguments | Description |
---|---|
PHApin | Phase A input pin, 4D Pin Name reference – see table above. |
PHBpin | Phase B input pin, 4D Pin Name reference – see table above. |
mode | Not currently used, set to 0 only. |
Returns: None
Example
var qen1Delta;
pin_Set(PIN_INP_HI, PA4); // Set PA4 to be Input with Pullup
pin_Set(PIN_INP_HI, PA5); // Set PA5 to be Input with Pullup
Qencoder1(PA4, PA5, 0); // connect PA4 and PA5 pins to quadrature encoder module #1
qen1Delta := peekW(QEN1_DELTA);
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
Qencoder1Reset
Resets the Counters and Delta values for Encoder #1.
QEN1_COUNTER_LO
is reset to zero.QEN1_COUNTER_HI
is reset to zero.QEN1_DELTA
is reset to zero.
Syntax: Qencoder1Reset();
Returns: None
Example
Qencoder2
Connect a quadrature encoder to a pair of pins, using the predefined 4D Pin Names in the table below, and the PHApin and PHBpin arguments in this function.
It is necessary to configure the pins first, depending on your requirements, e.g.
pin_Set(PIN_INP_HI, PA 8 // PA 8 as input, with pullup to Vcc
or maybe
pin_Set(PIN_INP, PA 9 // PA 9 as input, no pullup or pulldown
The position counter and delta can be read or written to at any time with peekW and pokeW using the following constants:
QEN2_COUNTER_LO
QEN2_COUNTER_HI
QEN2_DELTA
(QEN2_DELTA is reset to 0 once it has been read)
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: Qencoder2(PHApin, PHBpin, mode);
Arguments | Description |
---|---|
PHApin | Phase A input pin, 4D Pin Name reference – see table below. |
PHBpin | Phase B input pin, 4D Pin Name reference – see table below. |
mode | Not currently used, set to 0 only. |
Returns: None
Example
var qen2Delta;
pin_Set(PIN_INP, PA8); // Set PA8 to be Input pin_Set(PIN_INP, PA9); // Set PA9 to be Input
Qencoder2(PA8, PA9, 0); // connect PA8 and PA9 pins to quadrature encoder module #2
pokeW(QEN2_COUNTER_HI) := 12; // some ‘preset value’
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
Qencoder2Reset
Resets the Counters and Delta values for Encoder #2.
QEN2_COUNTER_LO
is reset to zero.QEN2_COUNTER_HI
is reset to zero.QEN2_DELTA
is reset to zero.
Syntax: Qencoder2Reset();
Returns: None
Example
pwm_Init
This PWM function enables a PWM output on the desired pin, based on the availability set out by the table below. Set the pin using the predefined 4D Pin Name into the pin argument, and select its mode and value, which are determined by:
PWM Mode | Description |
---|---|
PWM_OFF | Turn off the PWM (pin is left as Output) |
PWM_PLAIN | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is ~70kHz. A value of 1 is not valid. |
PWM_SERVO | Servo PWM has a value which is between 100 and 200. This corresponds to 1.00 to 2.00ms. Please note values from 0 to 600 are valid (0-6ms) but should be used with caution. Repitition Rate is ~50Hz or 20ms. |
PWN_BINARY | Binary PWM which value is a number between 0 and 1024. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is ~68kHz. A value of 1 is not valid. |
PWM_625HZ | Plain PWM which corresponds to 62.5Hz, which takes a value from 0 to 160. |
PWM_200HZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_500HZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_1KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_5KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_10KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_15KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_20KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_25KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_30KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
PWM_35KHZ | Plain PWM which value is a number between 0 and 1000. This corresponds to a 0.0 to 100.0% duty cycle. Raw Frequency is as specified. |
The pwm_Init is non-blocking and the pwm continues until turned off.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | No |
PA1 | 62 | No |
PA2 | 63 | No |
PA3 | 64 | No |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | No |
PA11 | 44 | No |
PA12 | 31 | No |
PA13 | 32 | No |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: pwm_Init(pin, mode, value);
Arguments | Description |
---|---|
pin | 4D Pin Name to enable the PWM on. |
mode | Modes for the PWM, see description below. |
value | Value determines Duty Cycle/Time Base depending on Mode, see below. |
Returns: TRUE if the pin number is legal, usually ignored.
Example
pwm_Init(PA4, PWM_PLAIN, 676); //Sets Plain PWM of 67.7% on PA4
pwm_Init(PA5, PWM_625HZ, 80); //Sets 62.5Hz PWM with 50% duty cycle
pwm_Init(PA6, PWM_500HZ, 500); //Sets 500Hz PWM with 50% duty cycle
pin_Pulseout
This function will invert the state of an output for "value" milliseconds.
pin_Pulseout is a non-Blocking function, that is, code execution may continue while a pulse is occurring, and pulses can occur on multiple pins simultaneously.
pin_PulseoutB is a Blocking function, where program execution is suspended during pulse.
If not already an output, pin is automatically made a push/pull output, and the last state of its output latch will determine pulse polarity.
Its open drain state is not altered if the pin was already an output.
If pulseout is called while pulseout is still active, the pulse timer will simply be updated with the new "value" and the pulse will continue with the extended value.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | No |
PA11 | 44 | No |
PA12 | 31 | No |
PA13 | 32 | No |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: pin_Pulseout(pin, value);
or pin_PulseoutB(pin, value);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name to enable Pulseout on. |
value | Length of pulse in milliseconds. |
Returns: TRUE if the pin number is legal (usually ignored).
Example
pin_Pulseout(PA3, 105); // create a Hi Pulse of 105ms on PA3
…
pin_set(PIN_OUT, PA1); // set PA1 as an Output
pin_HI(PA1); // set PA1 to output HI
pin_Pulseout(PA1, 50); // create a Lo pulse of 50ms on PA1
pin_Counter
Connect a counter to a pin to count transistions, and optionally call an event function when the 16bit counter wraps from 0xFFFF to zero.
The counter can be read or written to at any time with peekW and pokeW, therefore, the count may be set to 0xFFF0 for example, so that user function "OVFfuction" will be called after 16 pulses.
If "OVFfunction" is set to zero, only the counter will increment, and simply wrap back to zero from 0xFFFF. If "OVFfunction" points to a user function, wnen the event fires, pin_Counter will be disabled, and will need to be re-armed (ie '1shot' operation)
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | No |
PA1 | 62 | No |
PA2 | 63 | No |
PA3 | 64 | No |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | No |
PA11 | 44 | No |
PA12 | 31 | No |
PA13 | 32 | No |
PA14 | 37 | No |
PA15 | 36 | No |
The pin may be configured as an input or output, the function behaves the same.
All six pin counters may be active simultaneously, and the maximum frequency of pin transitions should not exceed a few Khz in mode 1 and 2 and are usually used for simple process control counting.
Pin Counter MODE | Description |
---|---|
COUNT_OFF (0) | Disconnect the counter from the pin, "OVFfunction" is therefore ignored, and counting is inhibited. |
COUNT_RISE (1) | increment counter on every rising edge. |
COUNT_FALL (2) | increment on every falling edge. |
COUNT_EDGE (3) | increment on every rising and falling edge. |
Syntax: pin_Counter(pin, mode, OVFfunction);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name to enable pin counter on, see table below. |
mode | Counter mode, see table below. |
OVFfunction | Event function to be queued on overflow of counter. |
Returns: None
Example
func main()
pin_Set(PIN_INP, PA4); // external start event
repeat // main loop
if(pin_Read(PA4))
pin_Counter(PA2, COUNT_RISE, userFunc);
endif
// user code here
forever
endfunc
func userFunc()
print("Hello World");
endfunc
ana_HS
Collects "samples" samples at "rate" frequency for 0 to 4 analogue pins and calls "userFunction" when done.
"rate" is samples represented as 1/100 samples per second, up to 250,000 reads/second across 1-4 channels. For example if you wish to sample at 5000 samples per second, you would set rate to be 50 as 5000 * 1/100 = 50.
Any unused IOx pins should have their buffer addresses (i.e. IO4buf) set to 0
For performance reasons samples are taken in chunks of 32, thus if you request 33 samples there will be a delay of 31 samples before "userFunction" is called
Syntax: ana_HS(rate, samples, IO1buf, IO2buf, IO3buf, IO4buf, userFunction);
Arguments | Description |
---|---|
rate | Number of samples per second, see rate commend below. |
samples | Number of samples to collect per analog channel. |
IO1buf | Buffer Address for first Analog Channel. |
OI2buf | Buffer Address for second Analog Channel. |
IO3buf | Buffer Address for third Analog Channel. |
IO4buf | Buffer Address for forth Analog Channel. |
userFunction | Function to call once all samples have been collected. |
Returns: None
Example
var x[100]; // Buffer for IO1buf
var b[100]; // Buffer for IO2buf
var c[100]; // Buffer for IO3buf
// 1000 samples a second, 10000 samples to be collected from 3 channels
ana_HS(1000, 10, a, b, c, 0, myFunc);
func myFunc()
//do something once samples collected
endfunc
Note
If Touch is enabled this function should be called no more than once per millisecond, otherwise touch behaviour could be erratic.
pin_PulseoutCount
This function will invert the state of an output at a "freq" freuency "count" times. This is a non-Blocking function, that is, code execution may continue while a pulse is occuring, and pulses can occur on multiple pins simultaneously. A function can be specified that will be called when all the pulses have been output. A maximum of 3 pulseoutCount activities can be active at any one point.
If not already an output, pin is automatically made a push/pull output, and the last state of its output latch will determine pulse polarity.
Its open drain state is not altered if the pin was already an output.
If pulseoutCount is called while pulseoutCount is active, the pulse counter will simply have the new count value added to it.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | No |
PA1 | 62 | No |
PA2 | 63 | No |
PA3 | 64 | No |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | No |
PA11 | 44 | No |
PA12 | 31 | No |
PA13 | 32 | No |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: pin_PulseoutCount(pin, frequency, count, function);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name to enable PulseoutCount on. |
frequency | The frequency to pulse the pin at (minimum 10Hz). |
count | The number of times to pulse the specified pin. |
function | Address of a function to be called at completion. |
Returns: TRUE if the pin number is legal and the frequency is at least 10Hz and the maximum number of 3 simultaneous pulseoutCount pins is not exceeded.
Example
func pulseCompleted()
// do something
endfunc
func main()
pin_set(PIN_OUT, PA4);
// ... user setup
// start an alternating pulse w/ 5000 inversions at 100Hz
pin_PulseoutCount(PA4, 100, 5000, pulseCompleted);
// runs pulseCompleted when done
// change pulseCompleted to 0 if not required
repeat
// ... user loop
forever
endfunc
OW_Reset
Resets a ONEWIRE device and returns the status.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: OW_Reset(pin);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name, see table above. |
Returns: Reset, and returns the status of the ONEWIRE device, 0 = ACK, 1 = No Activity.
Example
print ("result=", OW_Reset(PA0));
// This example will print a 0 if the device initialised successfully.
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
OW_Read
Reads the 8-bit value from a 1-Wire devices register. (refer to Dallas 1wired documentation for further information)
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: OW_Read(pin);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name, see table above. |
Returns: A word holding the lower 8-bits contain data bits received from the 1-Wire device.
Example
// read temperature from DS1821 device
var temp_buf;
OW_Reset(PA0); // reset the device
OW_Write(PA0, 0xAA); // send the read command
temp_buf := OW_Read(PA0); // read the device register
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
OW_Read9
Reads the 9 or more bit value from a 1-Wire devices register. (refer to Dallas 1wired documentation for further information)
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: OW_Read9(pin);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name, see table above. |
Returns: A word holding 9 or more data bits received from the 1-Wire device.
Example
// read temperature from DS1821 device
var temp_buf;
OW_Reset(PA0); // reset the device
OW_Write(PA0, 0xAA); // send the read command
temp_buf := OW_Read9(PA0) // read the device register
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
OW_Write
Writes the 8-bit data to 1-Wire devices register. (refer to Dallas 1wired documentation for further information)
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | No |
PA15 | 36 | No |
Syntax: OW_Write(pin, data);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name, see table above. |
data | The lower 8-bits of data are sent to the 1-Wire device. |
Returns: None
Example
//===================================================================
// For this demo to work, a Dallas DS18B20 must be connected to
// PA0 AND POWERED FROM 3.3 to 5V.
// DS18B20 pin1 = Gnd / pin2 = data in/out / pin 3 = + 3.3 v
// Refer to the Dallas DS18B20 for further information
//===================================================================
func main()
var temp_buf ;
pause(1000);
txt_MoveCursor(0,0);
if(OW _Reset(PA0)) // initialise and test
print("No device detected");
while(1);
endif
repeat
txt_MoveCursor(0, 0);
print ("result=", OW_Reset(PA0));
OW_Write(PA0, 0xcc); // sk ip ROM
OW_Write(PA0, 0x44); // start conversion
OW_Reset(PA0); // reset
OW_Write(PA0, 0xcc); // skip ROM
OW_Write(PA0, 0xBE); // get temperature
temp_buf := OW_Read(PA0);
temp_buf += (OW_Read(PA0) << 8);
txt_MoveCursor(1, 0);
print ("temp_buf=0x", [HEX4] temp_buf);
forever
endfunc
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
NP_Write
Writes a string of pixels to the NeoPixel array connected to the specified I/O Pin.
Due to the critical timing requirements of the NeoPixel, any interrupts should be stopped, or otherwise circumvented
before this command is issued. Internally, the system Timer is disabled during this command.
Comms Interrupts should also be disabled by the user, otherwise errors may occur. A suitable workaround is to repeat the NP_Write until com_Count
does not change during its execution.
Comms TX Buffers, if used, should be held.
Audio should be stopped or paused.
4D Pin Name (Predefined) | DIABLO-16 Pin Number | Availability |
---|---|---|
PA0 | 61 | Yes |
PA1 | 62 | Yes |
PA2 | 63 | Yes |
PA3 | 64 | Yes |
PA4 | 46 | Yes |
PA5 | 49 | Yes |
PA6 | 50 | Yes |
PA7 | 51 | Yes |
PA8 | 55 | Yes |
PA9 | 53 | Yes |
PA10 | 43 | Yes |
PA11 | 44 | Yes |
PA12 | 31 | Yes (See Note) |
PA13 | 32 | Yes (See Note) |
PA14 | 37 | Yes |
PA15 | 36 | Yes |
Syntax: NP_Write(pin, data, size, Options, RepeatFirst, Repeat, RepeatLast);
Arguments | Description |
---|---|
pin | 4D predefined Pin Name, see table above. |
data | The address of the data to be sent. |
size | The size of the data to be sent, in Pixels. |
Options | The format of the data pixels, NP_565, NP_RGB or NP_XRGB. |
RepeatFirst | Number of times to repeat the first colour (0 means first colour is not considered 'special'). |
Repeat | Number of times to repeat the colours between first and last. |
RepeatLast | Number of times to repeat the last colour (0 means last colour is not considered 'special') |
Returns: TRUE if the pin number is legal (usually ignored).
Example
var data[4] := [RED, LIME, BLUE, WHITE] ; // send Red, Lime Blue, and white to the NeoPixel strip twice
NP_Write(PA0, data, 4, 0, 2, 0);
// send 2 x Red, Lime, Blue and 2 x White to the NeoPixel strip
NP_Write(PA0, data, 4, 2 , 1 , 2 );
Note
Some 4D Systems display modules utilise this pin for additional peripherals such as Resistive or Capacitive Touch. To ensure that the pin is available for use, refer to the appropriate product’s datasheet.
Graphics Functions
gfx_Cls
Clear the screen using the current background colour. gfx_Cls() command brings some of the settings back to default; such as,
- Transparency turned OFF
- Outline colour set to BLACK
- Opacity set to OPAQUE
- Pen set to OUTLINE
- Line patterns set to OFF
- Right text margin set to full width
- Text magnifications set to 1
- All origins set to 0:0
The alternative to maintain settings and clear screen is to draw a filled rectangle with the required background colour.
Syntax: gfx_Cls();
Returns: None
Example
gfx_ChangeColour
Changes all oldColour pixels to newColour within the clipping area.
Syntax: gfx_ChangeColour(oldColour, newColour);
Arguments | Description |
---|---|
oldColour | Specifies the sample colour to be changed within the clipping window. |
newColour | Specifies the new colour to change all occurrences of old colour within the clipping window. |
Returns: None
Example
func main()
txt_Width(3);
txt_Height(5);
gfx_MoveTo(8,20);
print("TEST"); // print the string
gfx_SetClipRegion(); // force clipping area to extents of text
// just printed
gfx_ChangeColour(BLACK, RED); // test change of background colour
repeat forever
endfunc
// This example prints a test string, forces the clipping area to the extent of the text that was printed then changes the background colour.
gfx_Circle
Draws a circle with centre point x1, y1 with radius r using the specified colour.
Syntax: gfx_Circle(x, y, rad, colour);
Arguments | Description |
---|---|
x,y | Specifies the centre of the circle. |
rad | Specifies the radius of the circle. |
colour | Specifies the colour of the circle. |
Returns: None
Example
// assuming PEN_SIZE is OUTLINE
gfx_Circle(50,50,30, RED);
// This example draws a BLUE circle outline centred at x=50, y=50 with a radius of 30 pixel units.
Note
The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no outline is drawn.
gfx_CircleFilled
Draws a SOLID circle with centre point x1, y1 with radius using the specified colour.
The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no outline is drawn.
Syntax: gfx_CircleFilled(x, y, rad, colour);
Arguments | Description |
---|---|
x,y | Specifies the centre of the circle. |
rad | Specifies the radius of the circle. |
colour | Specifies the fill colour of the circle. |
Returns: None
Example
if(state == TOUCH_RELEASED) // if there's a release;
gfx_CircleFilled(x, y, 10, RED); // we'll draw a solid red circle
// of radius=10 on touch release
endif
Note
The PEN_SIZE is ignored, the circle is always drawn SOLID.
gfx_Line
Draws a line from x1, y1 to x2, y2 using the specified colour. The line is drawn using the current object colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...) function.
Syntax: gfx_Line(x1, y1, x2, y2, colour);
Arguments | Description |
---|---|
x1, y1 | Specifies the starting coordinates of the line. |
x2, y2 | Specifies the ending coordinates of the line. |
colour | Specifies the colour of the line. |
Returns: None
Example
gfx_Line(100, 100, 10, 10, RED);
// This example draws a RED line from x1=10, y1=10 to x2=100, y2=100
gfx_Hline
Draws a fast horizontal line from x1 to x2 at vertical co-ordinate y using colour.
Syntax: gfx_Hline(y, x1, x2, colour);
Arguments | Description |
---|---|
y | Specifies the vertical position of the horizontal line. |
x1, x2 | Specifies the horizontal end points of the line. |
colour | Specifies the colour of the horizontal line. |
Returns: None
Example
gfx_Hline(50, 10, 80, RED);
// This example draws a fast RED horizontal line at y=50, from x1=10 to x2=80
gfx_Vline
Draws a fast vertical line from y1 to y2 at horizontal co-ordinate x using colour.
Syntax: gfx_Vline(x, y1, y2, colour);
Arguments | Description |
---|---|
x | Specifies the horizontal position of the vertical line. |
y1, y2 | Specifies the vertical end points of the line. |
colour | Specifies the colour of the vertical line. |
Returns: None
Example
gfx_Vline(20, 30, 70, RED);
// This example draws a fast RED vertical line at x=20, from y1=30 to y2=70
gfx_Rectangle
Draws a rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated with the gfx_LinePattern(...) function.
Syntax: gfx_Rectangle(x1, y1, x2, y2, colour);
Arguments | Description |
---|---|
x1, y1 | Specifies the top left corner of the rectangle. |
x2, y2 | Specifies the bottom right corner of the rectangle. |
colour | Specifies the colour of the rectangle. |
Returns: None
Example
gfx_Rectangle(10, 10, 30, 30, GREEN);
// This example draws a GREEN rectangle from x1=10, y1=10 to x2=30, y2=30
Note
The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the rectangle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no outline is drawn. The outline may be tessellated with the gfx_LinePattern(...) function.
gfx_RectangleFilled
Draws a SOLID rectangle from x1, y1 to x2, y2 using the specified colour. The line may be tessellated with the gfx_LinePattern(...) function.
The outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no outline is drawn. The outline may be tessellated with the gfx_LinePattern(...) function.
Syntax: gfx_RectangleFilled(x1, y1, x2, y2, colour);
Arguments | Description |
---|---|
x1, y1 | Specifies the top left corner of the rectangle. |
x2, y2 | Specifies the bottom right corner of the rectangle. |
colour | Specifies the fill colour of the rectangle. |
Returns: None
Example
gfx_RectangleFilled(30,30,80,80, RED);
// This example draws a filled RED rectangle from x1=30,y1=30 to x2=80,y2=80
Note
The PEN_SIZE is ignored, the rectangle is always drawn SOLID.
gfx_RoundRect
Draw a filled rectangle at the given co-ordinates with optional rounded corners.
If x1 = x2 or y1 = y2 no straight line part is drawn.
The actual width of the round-corners rectangle is computed by: 2*rad + x2 – x1.
The actual height of the round-corners rectangle is computed by: 2*rad + y2 – y1.
Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern determined by ‘radius’.
Syntax: gfx_RoundRect(x1, y1, x2, y2, rad, colour);
Arguments | Description |
---|---|
x1, y1 | Specifies the top left corner of the inner rectangle. |
x2, y2 | Specifies the bottom right corner of the inner rectangle. |
rad | Specifies the corner radius.This is the distance in pixels extending from the corners of the inner rectangle. |
colour | Specifies the colour of the rectangle. |
Returns: None
Example
gfx_Polyline
Plots lines between points specified by a pair of arrays using the specified colour. The lines may be tessellated with the gfx_LinePattern(...) function. gfx_Polyline can be used to create complex raster graphics by loading the arrays from serial input or from MEDIA with very little code requirement.
This function is very similar to the Polygon function.
Syntax: gfx_Polyline(n, vx, vy, colour);
Arguments | Description |
---|---|
n | Specifies the number of elements in the x and y arrays specifying the vertices for the polyline. |
vx | Specifies the addresses of the storage of the array of elements for the x coordinates of the vertices. |
vy | Specifies the addresses of the storage of the array of elements for the y coordinates of the vertices. |
colour | Specifies the colour for the lines. |
Returns: None
Example
#inherit "4DGL_16bitColours.fnc"
var vx[20], vy[20];
func main()
vx[0] := 36; vy[0] := 110;
vx[1] := 36; vy[1] := 80;
vx[2] := 50; vy[2] := 80;
vx[3] := 50; vy[3] := 110;
vx[4] := 76; vy[4] := 104;
vx[5] := 85; vy[5] := 80;
vx[6] := 94; vy[6] := 104;
vx[7] := 76; vy[7] := 70;
vx[8] := 85; vy[8] := 76;
vx[9] := 94; vy[9] := 70;
vx[10] := 110; vy[10] := 66;
vx[11] := 110; vy[11] := 80;
vx[12] := 100; vy[12] := 90;
vx[13] := 120; vy[13] := 90;
vx[14] := 110; vy[14] := 80;
vx[15] := 101; vy[15] := 70;
vx[16] := 110; vy[16] := 76;
vx[17] := 119; vy[17] := 70;
// house
gfx_Rectangle(6,50,66,110,RED); // frame
gfx_Triangle(6,50,36,9,66,50,YELLOW); // roof
gfx_Polyline(4, vx, vy, CYAN); // door
// man
gfx_Circle(85, 56, 10, BLUE); // head
gfx_Line(85, 66, 85, 80, BLUE); // body
gfx_Polyline(3, vx+4, vy+4, CYAN); // legs
gfx_Polyline(3, vx+7, vy+7, BLUE); // arms
// woman
gfx_Circle(110, 56, 10, PINK); // head
gfx_Polyline(5, vx+10, vy+10, BROWN); // dress
gfx_Line(104, 104, 106, 90, PINK); // left arm
gfx_Line(112, 90, 116, 104, PINK); // right arm
gfx_Polyline(3, vx+15, vy+15, SALMON); // dress
repeat forever
endfunc
// This example draws a simple scene
gfx_Polygon
Plots lines between points specified by a pair of arrays using the specified colour. The last point is drawn back to the first point, completing the polygon. The lines may be tessellated with the gfx_LinePattern(...) function. gfx_Polygon can be used to create complex raster graphics by loading the arrays from serial input or from MEDIA with very little code requirement.
Syntax: gfx_Polygon(n, vx, vy, colour);
Arguments | Description |
---|---|
n | Specifies the number of elements in the x and y arrays specifying the vertices for the polygon. |
vx | Specifies the addresses of the storage of the array of elements for the x coordinates of the vertices. |
vy | Specifies the addresses of the storage of the array of elements for the y coordinates of the vertices. |
colour | Specifies the colour for the polygon. |
Returns: None
Example
var vx[7], vy[7];
func main()
vx[0] := 10; vy[0] := 10;
vx[1] := 35; vy[1] := 5;
vx[2] := 80; vy[2] := 10;
vx[3] := 60; vy[3] := 25;
vx[4] := 80; vy[4] := 40;
vx[5] := 35; vy[5] := 50;
vx[6] := 10; vy[6] := 40;
gfx_Polygon(7, vx, vy, RED);
repeat forever
endfunc
// This example draws a simple polygon
gfx_Triangle
Draws a triangle outline between vertices x1,y1 , x2,y2 and x3,y3 using the specified colour. The line may be tessellated with the gfx_LinePattern(...) function. Vertices must be specified in an anti-clockwise fashion.
Syntax: gfx_Triangle(x1, y1, x2, y2, x3, y3, colour);
Arguments | Description |
---|---|
x1, y1 | Specifies the first vertices of the triangle. |
x2, y2 | Specifies the second vertices of the triangle. |
x3, y3 | Specifies the third vertices of the triangle. |
colour | Specifies the colour for the triangle. |
Returns: None
Example
gfx_Triangle(10,10,30,10,20,30,CYAN);
// This example draws a CYAN triangular outline with vertices at 10,10 30,10 20,30
gfx_Dot
Draws a pixel at the current origin using the current object colour.
Syntax: gfx_Dot();
Returns: None
Example
gfx_Bullet
Draws a circle or 'bullet point' with radius r at the current origin using the current object colour.
Syntax: gfx_Bullet(radius);
Arguments | Description |
---|---|
radius | Specifies the radius of the bullet. |
Returns: None
Example
Note
The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the circle will be drawn filled, if PEN_SIZE is set to OUTLINE, the circle will be drawn as an outline. If the circle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...).
gfx_OrbitInit
Sets up the internal pointers for the gfx_Orbit(..) result variables. The &x_orb and &y_orb parameters are the addresses of the variables or array elements that are used to store the result from the gfx_Orbit(..) function.
Syntax: gfx_OrbitInit(&x_dest, &y_dest);
Arguments | Description |
---|---|
x_dest | Specifies the addresses of the storage locations for the calculated Orbit X-coordinate. |
y_dest | Specifies the addresses of the storage locations for the calculated Orbit Y-coordinate. |
Returns: None
Example
var targetX, targetY;
gfx_OrbitInit(&targetX, &targetY)
// This example sets the variables that will receive the result from a gfx_Orbit(..) function call
gfx_Orbit
Sets Prior to using this function, the destination address of variables for the calculated coordinates must be set using the gfx_OrbitInit(..) function. The gfx_Orbit(..) function calculates the x, y coordinates of a distant point relative to the current origin, where the only known parameters are the angle and the distance from the current origin. The new coordinates are calculated and then placed in the destination variables that have been previously set with the gfx_OrbitInit(..) function.
Syntax: gfx_Orbit(angle, distance);
Arguments | Description |
---|---|
angle | Specifies the angle from the origin to the remote point. The angle is specified in degrees. |
distance | Specifies the distance from the origin to the remote point in pixel units. |
Returns: None
Example
var targetX, targetY;
gfx_OrbitInit(&targetX, &targetY);
gfx_MoveTo(30, 30);
gfx_Bullet(5) // mark the start point with a small WHITE circle
gfx_Orbit(30, 50); // calculate a point 50 pixels away from origin at
// 30 degrees
gfx_CircleFilled(targetX,targetY,3,0xF800); // mark the target point
// with a RED circle
See example comments for explanation.
Note
Result is stored in the variables that were specified with the gfx_OrbitInit(..) function.
gfx_PutPixel
Draws a pixel at position x,y using the specified colour.
Syntax: gfx_PutPixel(x, y, colour);
Arguments | Description |
---|---|
x,y | Specifies the screen coordinates of the pixel. |
colour | Specifies the colour of the pixel. |
Returns: None
Example
gfx_GetPixel
Reads the colour value of the pixel at position x,y.
Syntax: gfx_GetPixel(x, y);
Arguments | Description |
---|---|
x,y | Specifies the screen coordinates of the pixel colour to be returned. |
Returns: The 8 or 16bit colour of the pixel (default 16bit).
Example
gfx_PutPixel(20, 20, 1234);
r := gfx_GetPixel(20, 20);
print(r);
// This example print 1234, the colour of the pixel that was previously placed.
gfx_MoveTo
Moves the origin to a new position.
Syntax: gfx_MoveTo(xpos, ypos);
Arguments | Description |
---|---|
xpos | Specifies the horizontal position of the new origin. |
ypos | Specifies the vertical position of the new origin. |
Returns: None
Example
#inherit "4DGL_16bitColours.fnc"
func help()
var x, y, state;
print("TOUCHE ME");
touch_Set(TOUCH_ENABLE); // lets enable the touch screen
while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED); //Wait for touch
// we'll need a place on the screen to start with
gfx_MoveTo(touch_Get( TOUCH_GETX), touch_Get( TOUCH_GETY));
gfx_Set(OBJECT_COLOUR, WHITE); // this will be our line colour
while(1)
state := touch_Get(TOUCH_STATUS); // Look for touch activity
x := tou ch_Get(TOUCH_GETX); // Grab x and the
y := touch_Get(TOUCH_GETY); // y coordinates of the touch
if(state == TOUCH_PRESSED) // if there's a press
gfx_LineTo(x, y); // Draw a line from previous spot
endif
if(state == TOUCH_RELEASED) // if there's a release;
gfx_CircleFilled(x, y, 10, RED); // Draw a solid red circle
endif
if(state == TOUCH_MOVING) // if there's movement
gfx_PutPixel(x, y, LIGHT GREEN); // we'll draw a green pixel
endif
wend // Repeat forever
endfunc
Note
This function sets the TEXT_MARGIN the x value, this is so you can easily left align text using \n
. If you don’t want this, simply set TEXT_MARGIN to 0 using pokeW(TEXT_MARGIN,0).
gfx_MoveRel
Moves the origin to a new position relative to the old position.
Syntax: gfx_MoveRel(xoffset, yoffset);
Arguments | Description |
---|---|
xoffset | Specifies the horizontal offset of the new origin. |
yiffset | Specifies the vertical offset of the new origin. |
Returns: None
Example
gfx_MoveTo(10, 20);
gfx_MoveRel(-5, -3);
gfx_Dot();
// This example draws a pixel using the current object colour at x=5, y=17
gfx_IncX
Increment the current X origin by 1 pixel unit. The original value is returned before incrementing. The return value can be useful if a function requires the current point before insetting occurs.
Syntax: gfx_IncX();
Returns: The current X origin before the increment.
Example
var n;
gfx_MoveTo(20,20);
n := 96;
while (n--)
gfx_ObjectColour(n/3);
gfx_Bullet(2);
gfx_IncX();
wend
// This example draws a simple rounded vertical gradient.
gfx_IncY
Increment the current Y origin by 1 pixel unit. The original value is returned before incrementing. The return value can be useful if a function requires the current point before insetting occurs.
Syntax: gfx_IncY();
Returns: The current Y origin before the increment.
Example
var n;
gfx_MoveTo(20,20);
n := 96;
while (n--)
gfx_ObjectColour(n/3);
gfx_LineRel(20, 0);
gfx_IncY();
wend
// This example draws a simple horizontal gradient using lines.
gfx_LineTo
Draws a line from the current origin to a new position. The Origin is then set to the new position. The line is drawn using the current object colour. The line may be tessellated with the gfx_LinePattern(...) function.
Syntax: gfx_LineTo(xpos, ypos);
Arguments | Description |
---|---|
xpos | Specifies the horizontal position of the line end as well as the new origin. |
ypos | Specifies the vertical position of the line end as well as the new origin. |
Returns: None
Example
gfx_MoveTo(10, 20);
gfx_LineTo(60, 70);
// This example draws a line using the current object colour between x1=10,y1=20 and x2=60,y2=70. The new origin is now set at x=60,y=70.
gfx_LineRel
Draws a line from the current origin to a new position. The line is drawn using the current object colour. The current origin is not altered. The line may be tessellated with the gfx_LinePattern(...) function.
Syntax: gfx_LineRel(xpos, ypos);
Arguments | Description |
---|---|
xpos | Specifies the horizontal end point of the line. |
ypos | Specifies the vertical end point of the line. |
Returns: None
Example
gfx_LinePattern(0b1100110011001100);
gfx_MoveTo(10, 20);
gfx_LineRel(50, 50);
// This example draws a tessellated line using the current object colour between 10,20 and 50,50.
Note
The gfx_LinePattern(0); must be used after this to return line drawing to normal solid lines.
gfx_BoxTo
Draws a rectangle from the current origin to the new point using the current object colour. The top left corner is anchored by the current origin (x1, y1), the bottom right corner is specified by x2, y2.
Syntax: gfx_BoxTo(x2, y2);
Arguments | Description |
---|---|
x2, y2 | Specifies the diagonally opposed corner of the rectangle to be drawn, the top left corner (assumed to be x1, y1) is anchored by the current origin. |
Returns: None
Example
gfx_MoveTo(40,40);
n := 10;
while (n--)
gfx_BoxTo(50,50);
gfx_BoxTo(30,30);
wend
// This example draws 2 boxes, anchored from the current origin.
gfx_SetClipRegion
Forces the clip region to the extent of the last text that was printed, or the last image that was shown.
Syntax: gfx_SetClipRegion();
Returns: None
Example
Note
The default PEN_SIZE is set to OUTLINE, however, if PEN_SIZE is set to SOLID, the rectangle will be drawn filled, if PEN_SIZE is set to OUTLINE, the rectangle will be drawn as an outline. If the circle is drawn as SOLID, the outline colour can be specified with gfx_OutlineColour(...). If OUTLINE_COLOUR is set to 0, no outline is drawn.
gfx_Ellipse
Plots a coloured Ellipse on the screen at centre x,y with xradius = xrad and yradius = yrad.
if PenSize = 0 Ellipse is Solid
if PenSize = 1 Ellipse is Outline
Syntax: gfx_Ellipse(x, y, xrad, yrad, colour);
Arguments | Description |
---|---|
x, y | specifies the horizontal and vertical position of the centre of ellipse. |
xrad, yrad | Specifies x-radius and y-radius of the ellipse. |
colour | Specifies the colour for the lines. |
Returns: None
Example
gfx_EllipseFilled
Plots a solid coloured Ellipse on the screen at centre x,y with xradius = xrad and yradius = yrad.
Syntax: gfx_EllipseFilled(x, y, xrad, yrad, colour);
Arguments | Description |
---|---|
x, y | specifies the horizontal and vertical position of the centre of ellipse. |
xrad, yrad | Specifies x-radius and y-radius of the ellipse. |
colour | Specifies the colour for the lines. |
Returns: None
Example
gfx_Button
Draws a 3-dimensional Text Button at screen location defined by x, y parameters (top left corner). The size of the button depends on the font, width, height and length of the text. The button can contain multiple lines of text by having the \n
character embedded in the string for the end of line marker. In this case, the widest text in the string sets the overall width, and the height of the button is set by the number of text lines. In the case of multiple lines, each line is left justified. If you wish to centre or right justify the text, you will need to prepare the text string according to your requirements.
Syntax: gfx_Button(state, x, y, buttonColour, txtColour, font, txtWidth, txtHeight, text);
Arguments | Description |
---|---|
state | 0 = Button pressed; 1 = Button raised. |
x, y | Specifies the top left corner position of the button on the screen. |
buttonColour | Button colour. |
txtColour | Text Colour. |
font | Specifies the Font ID. |
txtWidth | Specifies the width of the text. This value is the font width multiplier and minimum value must be 1. |
txtHeight | Specifies the height of the text. This value is the font height multiplier and minimum value must be 1. |
text | Specifies the text string. The text string must be within the range of printable ascii character set. The string may have \n characters embedded to create a multiline button. |
Returns: None
Example
#constant LEFT 30
#constant TOP 150
#constant TEXTWIDTH 2
#constant TEXTHEIGHT 2
//------------------------------------------------------------
func main()
// Draw a button as a Text Box (indented)
gfx_Button(DOWN, 0, 30, GREEN, WHITE, FONT_4, TEXTWIDTH, TEXTHEIGHT,"4DGL Demo");
touch_Set(TOUCH_ENABLE);
Repeat
// Dr aw the Push Button (raised)
gfx_Button(UP, LEFT, TOP, BLUE, RED, FONT 4, TEXTWIDTH,TEXTHEIGHT, " PRESS ");
// set touch detect region to that of the push button
touch_DetectRegion(LEFT, TOP, gfx_Get(RIGHT_POS), gfx_Get( BOTTOM_POS));
// Wait until the button is pressed
while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED);
// now redraw the Push Button (depressed)
gfx_Button(DOWN, LEFT, TOP, BLUE, WHITE, FONT_4, TEXTWIDTH,TEXTHEIGHT, " PRESS ");
// Wait until the button is pressed
while(touch_Get(TOUCH_STATUS) != TOUCH_RELEASED );
forever
endfunc
gfx_Button2
Draws a 3-dimensional Text Button at screen location defined by x, y parameters (top left corner). The size of the button is defined by the width and height parameters. The text is centred within those bounds. The button has square corners.
Syntax: gfx_Button2(mode, x, y, width, height, buttoncolour, textcolour, text);
Arguments | Description |
---|---|
mode | 0 = Button pressed; 1 = Button raised. |
x, y | Specifies the top left corner position of the button on the screen. |
width | Specifies the width of the button. |
height | Specifies the height of the button. |
buttonColour | Button colour. |
txtColour | Text Colour. |
text | Specifies the text string. The text string must be within the range of printable ascii character set. The string may have \n characters embedded to create a multiline button. |
Returns: None
Example
#constant LEFT 30
#constant TOP 150
#constant BWIDTH 50
#constant BHEIGHT 50
//----------------------------------------------------------------------------------------------
func main()
touch_Set(TOUCH_ENABLE);
repeat
// Draw the Push Button (raised)
gfx_Button2 (UP, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED," PRESS ");
// set touch detect region to that of the push button
touch_DetectRegion(LEFT, TOP, gfx_Get(RIGHT_POS), gfx_Get(BOTTOM_POS));
// Wait until the button is pressed
while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED);
// now redraw the Push Button (
gfx_Button2(DOWN , LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED," PRESS ");
// Wait until the button is pressed
while(touch_Get(TOUCH_STATUS) != TOUCH_RELEASED );
forever
endfunc
gfx_Button3
Draws a 3-dimensional Text Button at screen location defined by x, y parameters (top left corner). The size of the button is defined by the width and height parameters. The text is centred within those bounds. The button has rounded corners depending on gfx_BevelRadius().
Syntax: gfx_Button3(mode, x, y, width, height, buttoncolour, textcolour, text);
Arguments | Description |
---|---|
mode | 0 = Button pressed; 1 = Button raised. |
x, y | Specifies the top left corner position of the button on the screen. |
width | Specifies the width of the button. |
height | Specifies the height of the button. |
buttonColour | Button colour. |
txtColour | Text Colour. |
text | Specifies the text string. The text string must be within the range of printable ascii character set. The string may have \n characters embedded to create a multiline button. |
Returns: None
Example
#constant LEFT 30
#constant TOP 150
#constant BWIDTH 50
#constant BHEIGHT 50
//--------------------------------------------------------------------------------------------------------------------------------------
func main()
touch_Set(TOUCH_ENABLE);
repeat
// Draw the Push Button (
gfx_Button3 (UP, LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED," PRESS ");
// set tou ch detect region to that of the push button
touch_DetectRegion(LEFT, TOP, gfx_Get(RIGHT_POS), gfx_Get(BOTTOM_POS));
// Wait until the button is pressed
while(touch_Get(TOUCH_STATUS) != TOUCH_PRESSED);
// now redraw the Push Button (depressed)
gfx_Button3 (DOWN , LEFT, TOP, BWIDTH, BHEIGHT, BLUE, RED," PRESS ");
// Wait until the button is pressed
while(touch_Get(TOUCH_STATUS) != TOUCH_RELEASED );
forever
endfunc
gfx_Panel
Draws a 3-dimensional rectangular panel at a screen location defined by x, y parameters (top left corner). The size of the panel is set with the width and height parameters. The colour is defined by colour The state parameter determines the appearance of the panel, 0 = recessed, 1 = raised.
Syntax: gfx_Panel(state, x, y, width, height, Colour);
Arguments | Description |
---|---|
state | 0 = recessed; 1 = raised. |
x, y | Specifies the top left corner position of the panel on the screen. |
width | Specifies the width of the panel. |
height | Specifies the Height of the panel. |
colour | Specifies the colour of the panel. |
Returns: None
Example
#constant LEFT 15
#constant TOP 15
#constant WIDTH 100
#constant HEIGHT 100
func main()
// Draw a panel
gfx_Panel(RAISED, LEFT, TOP, WIDTH, HEIGHT, GRAY);
repeat forever
endfunc
gfx_RoundPanel
Draws a 3-dimensional rounded rectangular panel at a screen location defined by x, y parameters (top left corner). Width and height may be zero allowing the function to be used for rounded panels, rounded buttons, and circular buttons.
Bounding rectangle is x1-radius-bevelwidth, y1-radius-bevelwidth, x2+radius+bevelwidth, y2+radius+bevelwidth.
Syntax: gfx_RoundPanel(state, x, y, width, height, radius, bevelwidth, Colour);
Arguments | Description |
---|---|
state | 0 = recessed; 1 = raised. 2 = hide (draw object in background colour) |
x, y | Specifies the top left corner position of the panel on the screen. |
width | Specifies the width of the panel. |
height | Specifies the Height of the panel. |
radius | Specifies the corner radius. |
bevelwidth | Set Panel bevel width 0-15 pixels. |
colour | Specifies the colour of the panel. |
Return: None
Example
gfx_Slider2
Draws a vertical or horizontal slider bar on the screen. The gfx_Slider function has several different modes of operation. In order to minimise the amount of graphics functions we need, all modes of operation are selected naturally depending on the parameter values.
Selection rules:
- If width > height, slider is horizontal.
- If height <= width, slider is horizontal.
- If value is positive, thumb is set to the position that is the proportion of value to the scale parameter.(used to set the control to the actual value of a variable)
- If value is negative, thumb is driven to the graphics position set by the ABSolute of value. (used to set thumb to its actual graphical position (usually by touch screen)
- The thumb colour is determine by gfx_Set(OBJECT_COLOUR, value);, however, if the current object colour is BLACK, a darkened shade of the colour parameter is used for the thumb.
Syntax: gfx_Slider2(mode, x1, y1, width, height, colour, scale, value);
Arguments | Description |
---|---|
mode | mode = 0 : Slider Indented, mode = 1 : Slider Raised, mode 2, Slider Hidden (background colour). |
x1, y1 | Specifies the top left corner position of the slider on the screen. |
width | Specifies the width of the slider on the screen. |
height | Specifies the height of the slider on the screen. |
colour | Specifies the colour of the Slider bar. |
scale | scale = n : sets the full scale range of the slider for the thumb from 0 to n. |
value | value = m : sets the relative position of the thumb 0 <= m <= n. |
Returns: If the value parameter was a positive number (i.e:- value is a proportion of the scale parameter), the true (implied x-axis or y-axis) position of the thumb is returned.
If the value parameter was a negative number (i.e:- thumb is being set to an ABSolute graphics position), the actual slider value (which is a proportion of the scale parameter) is returned.
Example
func drawRedSlider()
gfx_Slider2(0,rSlider[0],rSlider[1], 100 ,50,RED,255, valR);
txt_MoveCursor(1,12);
txt_Set(TEXT_OPACITY, OPAQUE);
txt_Set(TEXT_COLOUR, RED);
print (" ");
txt_MoveCursor(1,12);
print ([DEC] valR);
endfunc
gfx_ScreenCopyPaste
Copies an area of a screen from xs, ys of size given by width and height parameters and pastes it to another location determined by xd, yd.
Syntax: gfx_ScreenCopyPaste(xs, ys, xd, yd, width, height);
Arguments | Description |
---|---|
xs, ys | Specifies the horizontal and vertical position of the top left corner of the area to be copied (source). |
xd, yd | Specifies the horizontal and vertical position of the top left corner of where the paste is to be made (destination). |
width | Specifies the width of the copied area. |
height | Specifies the height of the copied area. |
Returns: None
Example
gfx_ScreenCopyPaste(10,10, 100, 100, 40, 40);
// Copies 40x40 pixels originating from point (10,10) to (100,100);
gfx_Slider
Draws a vertical or horizontal slider bar on the screen. The gfx_Slider function has several different modes of operation. In order to minimise the amount of graphics functions we need, all modes of operation are selected naturally depending on the parameter values.
Selection rules:
- If x2-x1 > y2-y1 slider is assumed to be horizontal (ie: if width > height, slider is horizontal).
- If x2-x1 <= y2-y1 slider is assumed to be vertical (ie: if height <= width, slider is horizontal).
- If value is positive, thumb is set to the position that is the proportion of value to the scale parameter.(used to set the control to the actual value of a variable).
- If value is negative, thumb is driven to the graphics position set by the ABSolute of value. (used to set thumb to its actual graphical position (usually by touch screen).
- The thumb colour is determine by gfx_Set(OBJECT_COLOUR, value);, however, if the current object colour is BLACK, a darkened shade of the colour parameter is used for the thumb.
Syntax: gfx_Slider(mode, x1, y1, x2, y2, colour, scale, value);
Arguments | Description |
---|---|
mode | mode = 0 : Slider Indented, mode = 1 : Slider Raised, mode 2, Slider Hidden (background colour). |
x1, y1 | Specifies the top left corner position of the slider on the screen. |
x2, y2 | Specifies the bottom right corner position of the slider on the screen. |
colour | Specifies the colour of the Slider bar. |
scale | scale = n : sets the full scale range of the slider for the thumb from 0 to n. |
value | if value positive, sets the relative position of the thumb on the slider bar, else set thumb to ABS position of the negative number. |
Returns: If the value parameter was a positive number (i.e:- value is a proportion of the scale parameter), the true (implied x-axis or y-axis) position of the thumb is returned.
If the value parameter was a negative number (i.e:- thumb is being set to an ABSolute graphics position), the actual slider value (which is a proportion of the scale parameter) is returned.
Example
func drawRedSlider()
gfx_Slider(0,rSlider[0],rSlider[1],rSlider[2],rSlider[3],RED,255, valR);
txt_MoveCursor(1,12);
txt_Set(TEXT_OPACITY, OPAQUE);
txt_Set(TEXT_COLOUR, RED);
print (" ");
txt_MoveCursor(1,12);
print ([DEC] valR);
endfunc
gfx_RGBto565
Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour value of a 24bit (RED: 8, GREEN: 8, BLUE: 8 format) colour.
Syntax: gfx_RGBto565(RED, GREEN, BLUE);
Arguments | Description |
---|---|
RED | 8bit colour value for RED. |
GREEN | 8bit colour value for GREEN. |
BLUE | 8bit colour value for BLUE. |
Returns: The 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour value.
Example
var colorRGB;
colorRGB := gfx_RGBto565(170, 126, 0); // convert 8bit Red, Green and Blue color values to 16bit 565 color value
gfx_332to565
Returns the 16bit (RED: 5, GREEN: 6, BLUE: 5 format) value of an 8bit (RED: 3, GREEN: 3, BLUE: 2 format) colour.
Syntax: gfx_332to565(COLOUR8BIT);
Arguments | Description |
---|---|
COLOUR8BIT | 8bit colour value. 3bits for RED, 3bits for GREEN, 2bits for BLUE. |
Returns: The 16bit (RED: 5, GREEN: 6, BLUE: 5 format) value.
Example
var color565;
color565 := gfx_332to565(0b11010100); // Convert 8bit 332 color value to 16bit 565 color value
gfx_565to332
Returns the 8bit (RED: 3, GREEN: 3, BLUE: 2 format) value of a 16bit (RED: 5, GREEN: 6, BLUE: 5 format) colour.
Syntax: gfx_565to332(COLOUR16BIT);
Arguments | Description |
---|---|
COLOUR16BIT | 16bit colour value. 5bits for RED, 6bits for GREEN, 5bits for BLUE. |
Returns: The 8bit (RED: 3, GREEN: 3, BLUE: 2 format) value.
Example
var color332;
color332 := gfx_565to332(0x7F00); // Convert 16bit 565 color value to 8bit 332 color value
gfx_TriangleFilled
Draws a Solid triangle between vertices x1,y1 , x2,y2 and x3,y3 using the specified colour. Vertices must be specified in an anti-clockwise fashion.
Syntax: gfx_TriangleFilled(x1, y1, x2, y2, x3, y3, colour);
Arguments | Description |
---|---|
x1, y1 | Specifies the first vertices of the triangle. |
x2, y2 | Specifies the second vertices of the triangle. |
x3, y3 | Specifies the third vertices of the triangle. |
colour | Specifies the colour for the triangle. |
Returns: None
Example
gfx_TriangleFilled(10,10,30,10,20,30,CYAN);
// This example draws a CYAN Solid triangle with vertices at 10,10 30,10 20,30
gfx_PolygonFilled
Draws a solid Polygon between specified vertices: x1,y1 x2,y2 ... xn,yn using the specified colour. The last point is drawn back to the first point, completing the polygon. Vertices must be minimum of 3 and can be specified in any fashion.
Syntax: gfx_PolygonFilled(n, vx, vy, colour);
Arguments | Description |
---|---|
n | Specifies the number of elements in the x and y arrays specifying the vertices for the polygon. |
vx | Specifies the addresses of the storage of the array of elements for the x coordinates of the vertices. |
vy | Specifies the addresses of the storage of the array of elements for the y coordinates of the vertices. |
colour | Specifies the colour for the polygon. |
Returns: None
Example
var vx[7], vy[7];
func main()
vx[0] := 10; vy[0] := 10;
vx[1] := 35; vy[1] := 5;
vx[2] := 80; vy[2] := 10;
vx[3] := 60; vy[3] := 25;
vx[4] := 80; vy[4] := 40;
vx[5] := 35; vy[5] := 50;
vx[6] := 10; vy[6] := 40;
gfx_PolygonFilled(7, vx, vy, RED);
repeat forever
endfunc
// This example draws a simple filled polygon.
gfx_Origin
Sets relative screen offset for horizontal and vertical for the top left corner for graphics objects.
Syntax: gfx_Origin(x, y);
Arguments | Description |
---|---|
x, y | Specifies the horizontal and vertical position of the top left corner of the clipping window. |
Returns: None
Example
gfx_Get
Returns various graphics parameters to caller.
The following graphics parameters can be queried:
Mode | Description |
---|---|
X_MAX |
Current orientations Max X Value (X_MAX) |
Y_MAX |
Current orientations Max Y Value (Y_MAX) |
LEFT_POS |
Left location of Object |
TOP_POS |
Top location of Object |
RIGHT_POS |
Right location of Object |
BOTTOM_POS |
Bottom location of Object |
X_ORG |
Get current internal X position |
Y_ORG |
Get current internal Y position |
Syntax: gfx_Get(mode);
Arguments | Description |
---|---|
mode | Specifies graphics parameter to query. |
Returns:
Mode | Description |
---|---|
0 | Returns the maximum horizontal value of the display. |
1 | Returns the maximum vertical value of the display. |
2 | Returns the left location of the last drawn object such as a slider or button or an image/video. |
3 | Returns the top location of the last drawn object such as a slider or button or an image/video. |
4 | Returns the right location of the last drawn object such as a slider or button or an image/video. |
5 | Returns the bottom location of the last drawn object such as a slider or button or an image/video. |
6 | Returns the internal X position that was set with gfx_MoveTo(x, y); or gfx_Set(X_ORG, pos); |
7 | Returns the internal Y position that was set with gfx_MoveTo(x, y); or gfx_Set(X_ORG, pos); |
Example
var := gfx_Get(X_MAX); //Returns the maximum horizontal resolution of the display
var := gfx_Get(0);
var := gfx_Get(Y_MAX); //Returns the maximum vertical resolution of the display
var := gfx_Get(1);
var := gfx_Get(RIGHT_POS); //Returns the right location of the last drawn object
//that only has top, left parameters such as a button
// or an image/video.
var := gfx_Get(2);
var := gfx_Get(BOTTOM_POS); //Returns the bottom location of the last drawn object
//that only has top, left parameters such as a button
//or an image/video.
var := gfx_Get(3);
gfx_ClipWindow
Specifies a clipping window region on the screen such that any objects and text placed onto the screen will be clipped and displayed only within that region. For the clipping window to take effect, "Clipping" setting must be enabled separately using gfx_Set(CLIPPING, ON) or the shortcut gfx_Clipping(ON).
Syntax: gfx_ClipWindow(x1, y1, x2, y2);
Arguments | Description |
---|---|
x1, y1 | Specifies the horizontal and vertical position of the top left corner of the clipping window. |
x2, y2 | Specifies the horizontal and vertical position of the bottom right corner of the clipping window. |
Returns: None
Example
var n;
gfx_ClipWindow(10, 10, 50, 50 )
n := 50000;
while(n--)
gfx_PutPixel(RAND()%100, RAND()%100, RAND());
wend
repeat forever
// This example will draw 50000 random colour pixels, only the pixels within the clipping area will be visible
gfx_Set
Given a function number and a value, set the required graphics control parameter, such as size, colour, and other parameters. (See the Single parameter short-cuts for the gfx_Set functions below). It is strongly recommended to use the pre-defined constants rather than the mode numbers.
Single parameter short-cuts for the gfx_Set functions
Predefined Name | Description | Value |
---|---|---|
PEN_SIZE | Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot, gfx_Bullet and gfx_BoxTo (default mode is OUTLINE)* | 0 or SOLID 1 or OUTLINE |
BACKGROUND_COLOUR | Set the screen background colour | Colour, 0-65535 |
OBJECT_COLOUR | Generic colour for gfx_LineTo, gfx_LineRel, gfx_Dot, gfx_Bullet and gfx_BoxTo | Colour, 0-65535 |
CLIPPING | Turns clipping on/off. The clipping points are set with gfx_ClipWindow and must be set first. |
1 or 0 (ON or OFF) |
TRANSPARENT_COLOUR | Colour that needs to be made transparent. | Colour, 0-65535 |
TRANSPARENCY | Turn the transparency ON or OFF. Transparency is automatically turned OFF after the next image or video command. | 1 or 0 (ON or OFF) |
FRAME_DELAY | Set the inter frame delay for media_Video | 0 to 255msec |
SCREEN_MODE | Set required screen behaviour/orientation. | 0 or LANDSCAPE 1 or LANDSCAPE_R 2 or PORTRAIT 3 or PORTRAIT_R |
OUTLINE_COLOUR | Outline colour for rectangles and circles(set to 0 for no effect) | Colour, 0-65535 |
CONTRAST | LCD MODULES: contrast 0 = display OFF, 1-15 = contrast level (Actually backlight brightness) |
0 or OFF 1 to 15 for levels |
LINE_PATTERN | Sets the line draw pattern for line drawing. If set to zero, lines are solid, else each '1' bit represents a pixel that is turned off. Example: gfx_Set(LINE_PATTERN, 0b1111000011110000); // draw dotted line |
0 or OFF 1 to 0xFFFF 0 bits for pixels on 1 bits for pixels off |
COLOUR_MODE | Sets 8 or 16bit colour mode. Function not available, fixed as 16bit mode. |
0 or COLOUR16 1 or COLOUR8 |
BEVEL_WIDTH | Set Button Bevel Width, 0 pixel to 15pixels. | 0 None 1 to 15 pixels |
BEVEL_SHADOW | graphics button bevel shadow depth | 0 None 1 to 15 pixels |
X_ORIGIN | sets the origin of drawn objects to a position other than 0,0 | |
Y_ORIGIN | sets the origin of drawn objects to a position other than 0,0 | |
DISPLAY_PAGE | Choose Page to be displayed. Applies to 4.3” products with a Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3” display only, such as uLCD-43D/DT/DCT series and gen4-uLCD-43D/DT/DCT series of displays. Please refer to module datasheets for information on what SSD196x is present on your module. ** | 0 or 1 for SSD1961 0, 1 or 2 for SSD1963 |
READ_PAGE | Choose Page to be read. Applies to 4.3” products with a Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3” display only, such as uLCD-43D/DT/DCT series and gen4-uLCD-43D/DT/DCT series of displays. Please refer to module datasheets for information on what SSD196x is present on your module. ** | 0 or 1 for SSD1961 0, 1 or 2 for SSD1963 |
WRITE_PAGE | Choose Page to be written. Applies to 4.3” products with a Solomon SSD1961 and SSD1961 Driver IC only, with a 4.3” display only, such as uLCD-43D/DT/DCT series and gen4-uLCD-43D/DT/DCT series of displays. Please refer to module datasheets for information on what SSD196x is present on your module. ** | 0 or 1 for SSD1961 0, 1 or 2 for SSD1963 |
Single parameter short-cuts for the gfx_Set functions
Function Syntax | Function Action | Value |
---|---|---|
gfx_PenSize(mode) | Set the draw mode for gfx_LineTo, gfx_LineRel, gfx_Dot, gfx_Bullet and gfx_BoxTo* | 0 or SOLID 1 or OUTLINE |
gfx_BGcolour(colour) | Set the screen background colour | Colour 0-65535 |
gfx_ObjectColour(colour) | Generic colour for gfx_LineTo, gfx_LineRel, gfx_Dot, gfx_Bullet and gfx_BoxTo | Colour 0-65535 |
gfx_Clipping(mode) | Turns clipping on/off. The clipping points are set with gfx_ClipWindow. |
0 or 1 (ON or OFF) |
gfx_TransparentColour(colour) | Colour that needs to be made transparent. | Colour, 0-65535 |
gfx_Transparency(mode) | Turn the transparency ON or OFF. | 0 or 1 (ON or OFF) |
gfx_FrameDelay(delay) | Set the inter frame delay for media_Video. | 0 to 255msec |
gfx_ScreenMode(mode) | Graphics orientation LANDSCAPE, LANDSCAPE_R, PORTRAIT, PORTRAIT_R | 1 or LANDSCAPE 2 or LANDSCAPE_R 3 or PORTRAIT 4 or PORTRAIT_R |
gfx_OutlineColour(colour) | Outline colour for rectangles and circles.(set to 0 for no effect) | Colour 0-65535 |
gfx_Contrast(value) | LCD MODULES: contrast 0 = display OFF, 1-15 = contrast level (Actually backlight brightness) |
0 or OFF 1 to 15 for levels |
gfx_LinePattern(pattern) | Sets the line draw pattern for line drawing. If set to zero, lines are solid, else each '1' bit represents a pixel that is turned off. See code examples for further reference. Example: gfx_Set(LINE_PATTERN, 0b1111000011110000);// draw dotted line |
0 or OFF 1 to 0xFFFF 0 bits for pixels on 1 bits for pixels off |
gfx_BevelRadius(radius) | graphics button bevel radius | 0 None 1 to 15 pixels |
gfx_BevelWidth(mode) | graphics button bevel width | 0 None 1 to 15 pixels |
gfx_BevelShadow(value) | graphics button bevel shadow depth | 0 None 1 to 15 pixels |
gfx_Xorigin(offset) | graphics X origin | |
gfx_Yorigin(offset) | graphics Y origin |
Syntax: gfx_Set(function, value);
Arguments | Description |
---|---|
function | The function number determines the required action for various graphics control functions. Usually a constant, but can be a variable, array element, or expression. There are pre-defined constants for each of the functions. |
mode | A variable, array element, expression or constant holding a value for the selected function. |
Returns: None
Example
Note
Although it is often required to be able to set graphics functions with a single function call for graphics engine related functions, there is a complete set of single parameter shortcut functions that have exactly the same function as each of the gfx_Set modes and saves 1 parameter, i.e. uses less memory.
*pen size is set to OUTLINE for normal operation.
**SSD1961 has 2 Pages, SSD1963 has 3 pages.
gfx_Arc
Draws an arc at "xc":"yc" with radius "radius", starting at "startangle" and ending at "endangle". Colour is determined by current object colour.
Syntax: gfx_Arc(cx, cy, radius, step, startangle, endangle, mode);
Arguments | Description |
---|---|
cx, cy | Center of the arc. |
radius | Radius of the arc. |
step | Step is the stepping angle increment for the fineness of the arc. |
startangle | Starting angle of the arc. |
endangle | Ending angle of the arc. |
mode | mode = 0, outer circumference line only. mode = 1, outer circumference and lines back to cx:cy. |
Returns: None
Example
gfx_Arc(120, 150, 100, 1, 0, 90 ,0);
/*
* Draws an arc with 100 pixel radius with center at point (120,150)
* The arc starts from from 0 to 90 degree angle
* Lines from the ends of the arc to the center are not drawn.
*/
gfx_CheckBox
Draws a CheckBox at screen location defined by x,y arguments (top left corner).
Syntax: gfx_CheckBox(state, x, y, Width, Height, boxColour, textColour, text);
Arguments | Description |
---|---|
state | state = 1 = UNCHECKED : CheckBox Unchecked state = 0 = CHECKED : Checkbox Checked |
x, y | Top left corner of the Checkbox. |
width | Width of the checkbox. |
height | Height of the checkbox. |
boxColour | Checkbox colour. |
textCplour | Text colour. |
text | The text is to the right of the checkbox and truncated if necessary |
Returns: None
Example
gfx_CheckBox(1, 20, 20, 100, 25, BLUE , LIME , "4D Labs");
/*
* Draws a n UNCHECKED checkbox, top left corner at (20
* The checkbox has a width of 100 pixels to conta in ‘4D Labs’
*/
gfx_RadioButton
Draws a Radio-button at screen location defined by x,y arguments (top left corner).
Syntax: gfx_RadioButton(state, x, y, width, height, boxColour, textColour, text);
Arguments | Description |
---|---|
state | state = 1 = UNCHECKED : Radio-button Unchecked state = 0 = CHECKED : Radio-button Checked |
x,y | Top left corner of the Radio-button. |
width | Width of the Radio-button. |
height | Height of the Radio-button. |
boxColour | Radio-button colour. |
textColour | Text colour. |
text | The text is to the right of the Radio-button and truncated if necessary |
Returns: None
Example
gfx_RadioButton(0, 20, 20, 100, 25, BLUE, LIME, "4D Labs");
/*
* Draws a CHECKED radio button, top left corner at (20, 150)
* The radio button has a width of 100 pixels to contain ‘4D Labs'
*/
gfx_FillPattern
Selects a tessellating pattern for painting solid objects. ‘patptr’ points to a 8x8 tile for rendering filled areas. Rendering is turned off with gfx_FillPattern(0, mode); or gfx_FillPattern(OFF, mode);
‘mode’ maybe TRANSPARENT or OPAQUE (0 or 1), for OPAQUE mode, the current screen colour is used for the 'off' pixels, for transparent mode, the 'off' pixels are not drawn.
gfx_FillPattern affects all filled object, including polygons. There are 32 builtin patterns; these are obtained using the pre-defined constants FILLPATTERN_0 to FILLPATTERN_31. Note that the constants range from 0xFFE0 to 0xFFFF, any other value is assumed to be a pointer to a user’s 8 byte block pattern. Predefined constants are used to select the internal patterns, FILLPATTERN_0 through to FILLPATTERN_31
Syntax: gfx_FillPattern(patptr, mode);
Arguments | Description |
---|---|
patptr | 0 = 0ff, 0xFFE0 to 0xFFFF = builtin patterns, else patptr points to a users 8 byte pattern. |
mode | TRANSPARENT or OPAQUE (0 or 1) |
Returns: The handle of the previous pattern.
Example
gfx_FillPattern(OFF, TRANSPARENT); // Turns OFF pattern rendering
gfx_FillPattern(FILLPATTERN_31, TRANSPARENT);
// Renders FILLPATTERN_31 in transparent mode for filled objects
gfx_FillPattern(FILLPATTERN_17, OPAQUE);
// Renders FILLPATTERN_17 in OPAQUE mode for filled objects
gfx_Gradient
Draws a graduated colour rectangle at the specified co-ordinate. Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.
Syntax: gfx_Gradient(style, x1, y1, x2, y2, color1, color2);
Arguments | Description |
---|---|
style | Specifies gradient style. GRAD_DOWN gradient changes in the vertical direction GRAD_RIGHT gradient change in the horizontal direction GRAD_UP gradient changes in the vertical direction GRAD_LEFT gradient change in the horizontal direction GRAD_WAVE_VER gradient wave in the vertical direction GRAD_WAVE_HOR gradient wave in the horizontal direction |
x1, y1 | Specifies top left corner of the rectangle. |
x2, y2 | Specifies bottom right corner of the rectangle. |
color1 | Specifies starting colour. |
color2 | Specifies ending colour. |
Returns: None
Example
gfx_RoundGradient
Draws a graduated colour rectangle at the specified co-ordinate.
X1 may equal X2, and Y1 = Y2 allowing the function to be used for rounded panels, rounded buttons, circular buttons.
Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.
Syntax: gfx_RoundGradient(style, x1, y1, x2, y2, radius, color1, color2);
Arguments | Description |
---|---|
style | Specifies gradient style. GRAD_DOWN gradient changes in the vertical direction GRAD_RIGHT gradient change in the horizontal direction GRAD_UP gradient changes in the vertical direction GRAD_LEFT gradient change in the horizontal direction GRAD_WAVE_VER gradient wave in the vertical direction GRAD_WAVE_HOR gradient wave in the horizontal direction |
x1, y1 | Specifies top left corner of the rectangle. |
x2, y2 | Specifies bottom right corner of the rectangle. |
radius | Specifies the corner radius. |
color1 | Specifies starting colour. |
color2 | Specifies ending colour. |
Returns: None
Example
//Draw graduated colour rounded rectangle
gfx_RoundGradient(GRAD_WAVE_HOR, 10, 10,230, 160, 10, BLACK, WHITE);
gfx_PieSlice
Draws a pie slice (filled arc) at xc:yc with radius, starting at startangle and ending at endangle. Rendering can be obtained with gfx_FillPattern(PATTRN); or gfx_FillPattern(OFF); for no fill pattern.
Syntax: gfx_PieSlice(cx, cy, spread, radius, step, startangle, endangle, mode, colour);
Arguments | Description |
---|---|
cx, cy | Center of the slice. |
spread | Center offset: it is used to offset the centrepoint of the pieslice to shift a pie chart piece away from the centrepoint. |
radius | Radius of the Slice. |
step | Step is the stepping angle increment for the fineness of the slice. |
startangle | Starting angle of the slice. |
endangle | Ending angle of the slice. |
mode | mode = 0, no outline. mode = 1, outer circumference line only. mode = 2, outer circumference and slice lines. |
colour | Specifies colour of the colour of the PieSlice. |
Returns: None
Example
gfx_PieSlice(120, 150, 0, 100, 1, 0, 90, 0, LIME);
/*
* Draws a filled arc, 100 pixel radius, center at point (120,150)
* The arc starts from from 0 to 90 degree angle
* Outlines are not drawn
*/
gfx_PointWithinBox
Returns true if last touch co-ordinates are within the box test area.
Syntax: gfx_PointWithinBox(x, y, &rect);
Arguments | Description |
---|---|
x, y | Coordinates |
&rect | An array of 4 vars, x1, y1, width, height. |
Returns: True if last touch co-ordinates are within the box test area.
Example
var x, y;
var rect[4] := [0,0,480,320];
touch_Set(TOUCH_ENABLE);
repeat
x := touch_Get(TOUCH_GETX);
y := touch_Get(TOUCH_GETY);
if (gfx_PointWithinBox(x,y,rect) == 1)
txt_MoveCursor(0,0);
print("X: ",[DEC]x, " Y: ", [DEC]y, " \nTOUCHED");
endif
forever
gfx_PointWithinRectangle
Returns true if last touch co-ordinates are within the rectangle test area.
Syntax: gfx_PointWithinRectangle(x, y, &recta);
Arguments | Description |
---|---|
x, y | Coordinates |
&recta | An array of 4 vars, x1, y1, x2, y2. |
Returns: True if last touch co-ordinates are within the rectangle test area.
Example
var x, y;
var rect[4] := [0,0,100,120];
touch_Set(TOUCH_ENABLE);
repeat
x := touch_Get(TOUCH_GETX);
y := touch_Get(TOUCH_GETY);
if (gfx_PointWithin Rectangle (x,y,rect) == 1)
txt_MoveCursor(0,0);
print("X: ",[DEC]x, " Y: ", [DEC]y, " \nTOUCHED");
endif
forever
gfx_readBresLine
Due to the fact that most LCDs are not double buffered, and memory is limited on small platforms, gfx_ReadBresLine offers a simple but powerful way of manipulating raster lines by storing all the pixels for an arbitrary line.
Typically, gfx_ReadBresLine is used when ‘rubber banding’ a rectangular area when dragging a marker rectangle, or drawing a needle on a pre-rendered meter or gauge image. The power of this function is further extended when used with the array math functions.
gfx_ReadBresLine reads an arbitrary line from the display to an array. If "ptr" is 0, the correctly sized array is created, in which case it is up to the caller to eventually destroy it when no longer required. Otherwise, "ptr" is expected to point to a correctly sized array.
Syntax: gfx_readBresLine(x1, y1, x2, y2, ptr);
Arguments | Description |
---|---|
x1, y1 | Line mapping start point. |
x2, y2 | Line mapping end point. |
ptr | If zero is passed, an array of the required size to map the line is created. If non zero, it is expected that this is a pointer to an array large enough to store each pixel that is read. |
Returns: A pointer to the created array, or the users array. In the case of ptr=0 (creation of array), if there is insufficient memory to create the array, zero is returned.
Example
var array;
array := gfx_ReadBresLine(50,50,250,175,0);
// Copy the pixels of the line with endpoint at (50,50) and (250, 175)
// and saves it to the generated array. The address is then returned
// and saved to the variable 'array'
gfx_BGcolour(LIME);
gfx_Cls(); // Sets the background to a single color
gfx_WriteBresLine(100,100,300,225,array);
// Copies the line to the new
// Endpoints are at (100,100) and (300,225)
Note
If an array is supplied, its size must be large enough, and may be calculated:
gfx_WriteBresLine
Cast pixel values from array to arbitrary line.
Syntax: gfx_WriteBresLine(x1, y1, x2, y2, ptr);
Arguments | Description |
---|---|
x1, y1 | Line mapping start point. |
x2, y2 | Line mapping end point. |
ptr | Points to the array to be written. |
Returns: None
Example: See gfx_ReadBresLine.
gfx_ReadGRAMarea
Reads an arbitrary rectangular area from the display to an array. If "ptr" is 0, the correctly sized array is created, in which case it is up to the caller to eventually destroy it. Otherwise, "ptr" is expected to point to a correctly sized array.
Syntax: gfx_ReadGRAMarea(x1, y1, x2, y2, ptr);
Arguments | Description |
---|---|
x1, y1 | Top left corner of the rectangular area. |
x2, y2 | Bottom right corner of the rectangular area. |
ptr | If zero is passed, an array of the required size to map the line is created. If non zero, it is expected that this is a pointer to an array large enough to store each pixel that is read. |
Returns: A pointer to the created aray, or the users array. In the case of ptr=0, if there is insufficient memory to create the array, zero is returned.
Example
var array;
array := gfx_Read GRAMarea (50, 50, 250, 175, 0);
// Copy the pixels of the GRAM area with top left and bottom right
// endpoints at (50,50) and (250,175) and saves it to the generated
// array. The address is then returned and saved to variable ‘array'
gfx_BGcolour(LIME);
gfx_Cls(); // Sets the background to a single color
gfx_WriteGRAMarea (100,100,300,225,array);
// Copies the GRAM area to the new coordinates,
// Top left and bottom right corners are at (100,100) and (300, 225)
Note
If an array is supplied, its size must be large enough, and maybe calculated:
gfx_WriteGRAMarea
Write an array back to the rectangular area.
Syntax: gfx_WriteGRAMarea(x1, y1, x2, y2, ptr);
Arguments | Description |
---|---|
x1, y1 | Top left corner of the rectangular area. |
x2, y2 | Bottom right corner of the rectangular area. |
ptr | Points to an array to be written. |
Returns: None
Example: See gfx_ReadGRAMarea.
gfx_Surround
Draws an outline rectangle at the given co-ordinates with optional rounded corners determined by ‘rad1’. ‘rad2’ is added to ‘rad1’ to form the outer rounded rectangle. If ‘rad1’ is zero, the inner rectangle will have square corners.
Syntax: gfx_Surround(x1, y1, x2, y2, rad1, rad2, color);
Arguments | Description |
---|---|
x1, y1 | Specifies the top left corner position of the surround on the screen. |
x2, y2 | Specifies the bottom right corner position of the surround on the screen. |
rad1 | Inner corner radius. |
rad2 | Outer corner radius. |
color | The colour of the surround. |
Returns: None
Example
// Draw a surround with rounded corners, 3 pixels wide
gfx_Surround(40, 40, 100, 60, 15, 3, YELLOW);
gfx_Scope
Draws up to 4 waveforms from table(s) of vertices at the specified origin. Also useful for drawing line graphs.
X position is incremented each point by "Xstep" pixels. Values are skipped for negative values. Y values are derived from a Y buffer.
After the waveform is drawn, "newy" buffer is automatically copied to "oldy" buffer. Use 0 as the buffers for any unused waveforms.
Syntax: gfx_Scope(left, width, Yzero, N, Xstep, Yamp, colourbg, old_y1, new_y1, colour1, old_y2, new_y2, colour2, old_y3, new_y3, colour3, old_y4, new_y4, colour4);
Arguments | Description |
---|---|
left | The left margin of the Scope. |
width | The width of the Scope. |
Yzero | The y position that corresponds to a y value of zero, normally "Top" + "Height" for a graph, or "Top" + "Height"/2 for a scope. |
N | The number of elements in each buffer. This will need to be greater than "width" for negative "Xstep" values. |
Xstep | X position is incremented each point by "xstep" pixels. |
Yamp | Amplification in the Y direction, 100 is unity. |
colourbg | The color of the Scope’s Background. |
oldy1..4 | Buffer containing most recent set of points to be un-drawn. |
newy1..4 | Buffer containing new points to be drawn. |
colour1..4 | Colour of the waveform. |
Returns: None
Example
gfx_RingSegment
Draw a Segment of a ring at x, y from rad1 to rad2 starting at starta to enda in colour.
Syntax: gfx_RingSegment(x, y, Rad1, Rad2, starta, enda, colour);
Arguments | Description |
---|---|
x, y | Center |
Rad1 | Outer radius |
Rad2 | Inner radius |
starta | Start angle |
enda | End angle |
colour | Colour |
Returns: None
Example
gfx_AngularMeter
Draw an angular meter as defined by MeterDef (if required), using MeterRam positioning at position value. See the reference for the MeterDef values.
#DATA
word Gauge1Info
// Scale parameters
90, // Range scale outer edge radius
70, // Range scale inner edge radius
20, // Number of partitions of marker ticks
2, // Number of minor ticks before next major tick (0 to disable)
17, // Length for major ticks radiating from scale outer edge
5, // Length for minor ticks radiating from scale outer edge
10, // Length for major ticks radiating from scale inner edge
2, // Length for minor ticks radiating from scale inner edge
1, // Tick width
0xFFFF, // Tick color
270, // Starting angle for range scale second ring section
337, // Starting angle for range scale third ring section
0xDF, // Range scale first ring section color
0x3BF, // Range scale second ring section color
0xF800, // Range scale third ring section color
0, // Range scale section incremental step size
10, // Total number of marker scale labels
1, // Marker scale label font style
0xFFFF, // Marker scale label text color
15, // Marker scale label offset distance (relative to range scale midpoint)
0, /* Labels */ // Pointer to label strings (Default is numeric is set to zero (0))
(0 + 0 + 0 + 0), // Gauge Options
2, // Caption
0xFFFF, // Caption text color
-26, // Caption horizontal offset from rotation centre
56, // Caption vertical offset from rotation centre
Caption, // Caption text pointer
// Gauge parameters common to needle
10, // Top-Left X-position
10, // Top-Left Y-position
235, // Width
197, // Height
128, // Rotation centre X-position
125, // Rotation centre Y-position
0x0, // Background color (required for erasing needle path)
135, // Starting angle
405, // Ending angle
0, // Minimum value
100, // Maximum value
// Needle parameters
60, // Needle length
NEEDLE_F_TRIANGLE, // Needle style options
0, // Needle offset distance from center
6, // Needle width (Half value of overall needle thickness)
30, // Needle tail length (Applicable only for double triangle style)
0xFFFF, // Needle color
6, // Needle Hub radius
0xFFFF, // Needle Hub color
2, // Needle Pin radius
0xF800 // Needle Pin color
byte Caption "Caption\0" // Caption string (Use null terminator "\0" to end string)
byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0" // Label text strings (Use null terminator "\0" as separators)
#END
ANGULAR_F_LABEL_STRINGS //Set bit for swapping gauge direction
ANGULAR_F_BG_TRANSPARENT //Set bit for toggling background transparency
ANGULAR_F_TICK_PCT_COLOUR //Set bit for replacing tick color with range scale section colors
ANGULAR_F_TEXT_PCT_COLOUR //Set bit for replacing marker label color with range scale section colors
Note
The angular meter function will require the gfx_Needle in order to function.
Syntax: gfx_AngularMeter(value, &MeterRam, &MeterDef);
Arguments | Description |
---|---|
value | A value (usually a constant) specifying the current frame of the widget. |
&MeterRam | A pointer to a variable array for widget utilization. |
&MeterDef | A pointer to the Data Block holding the widget parameters. |
Returns: None
Example
var state;
var Gauge1Ram[10];
#DATA
word Gauge1Info 90, 70, 20, 2, 17, 5, 10, 2, 1, 0xFFFF, 270, 337, 0xDF,
0x3BF, 0xF800, 0, 10, FONT1, 0xFFFF, 15, 0, (0 + 0 + 0 + 0), FONT2, 0xFFFF,
26, 56, Gauge1Caption, 10, 10, 235, 197, 128, 125, 0x0, 135, 405, 0, 100,
60, NEEDLE_F_TRIANGLE, 0, 6, 30, 0xFFFF, 6, 0xFFFF, 2, 0xF800
byte Gauge1Caption "Caption\0"
#END
func main()
gfx_AngularMeter(state, Gauge1Ram, Gauge1Info); // Gauge
repeat forever
endfunc
gfx_Panel2
Draws a panel2 (groupbox) at screen location defined by x, y, width and height with left colour "cl" and right colour "cr"and option fill colour "cf".
w1 and w2 define the width of the outer and inner borders.
state = 0 : recessed
state = 1 : raised
state + PANEL2_FILLED : draws with fill color "cf"
Syntax: gfx_Panel2(state, x, y, width, height, w1, w2, cl, cr, cf);
Arguments | Description |
---|---|
state | Bevel direction (0 – Inwards, 1 – Outwards) Additional bit for filling panel with fill color (0x8000 - PANEL2_FILLED). |
x, y | Top-Left X-position, Top-Left Y-position |
width | Panel width. |
height | Panel height. |
w1 | Outer bevel offset. |
w2 | Inner bevel offset. |
cl | Main bevel color. |
cr | Shadows bevel color. |
cf | Panel fill color. |
Returns: None
Example
func main()
gfx_Panel2(1, 10, 10, 77, 81, 5, 5, 0xFFFF, 0x528A , 0x8800 ); // Panelobject
repeat forever
endfunc
gfx_Needle
Draw a Needle as defined by NeedleDef (if required), using NeedleRam positioning at position value. See the reference for the NeedleDef values.
#DATA
word NeedleInfo 10, // Top-Left X-position
10, // Top-Left Y-position
235, // Width
197, // Height
128, // Rotation centre X-position
125, // Rotation centre Y-position
0x0, // Background color (required for erasing needle path)
135, // Starting angle
405, // Ending angle
0, // Minimum value
100, // Maximum value
60, // Needle length
NEEDLE_F_LINE, // Needle style options
0, // Needle offset distance from center
6, // Needle width (Half value of overall needle thickness)
30, // Needle tail length (Applicable only for DoubleTriangle style)
0xFFFF, // Needle color
6, // Needle Hub radius
0xFFFF, // Needle Hub color
2, // Needle Pin radius
0xF800 // Needle Pin color
#END
NEEDLE_F_LINE //Line needle pointer
NEEDLE_F_RECTANGLE //Rectangular needle pointer
NEEDLE_F_POINTRECTANGLE //Pointed rectangular needle pointer
NEEDLE_F_TRIANGLE //Triangular needle pointer
NEEDLE_F_DOUBLETRIANGLE //Double ended triangular needle pointer
NEEDLE_F_ROUNDEDRECTANGLE //Rounded corner rectangular needle pointer
Syntax: gfx_Needle(value, &NeedleRam, &NeedleDef);
Arguments | Description |
---|---|
value | A value (usually a constant) specifying the current frame of the widget. |
&NeedleRam | A pointer to a variable array for widget utilization. |
&NeedleDef | A pointer to the Data Block holding the widget parameters. |
Returns: None
Example
var frame;
var NeedleRam[10];
#DATA
word NeedleInfo 10, 10, 235, 197, 128, 125, 0x0, 135, 405, 0, 100, 60,
NEEDLE_F_TRIANGLE, 0, 6, 30, 0xFFFF, 6, 0xFFFF, 2, 0xF800
#END
func main()
gfx_Needle(frame, NeedleRam, NeedleInfo); // Rotating Needle
repeat forever
endfunc
Note
The needle function can be used standalone without the angular meter function, but the angular meter function will require the needle function.
gfx_Dial
Draw a Dial as defined by DialDef (if required), using DialRam positioning at position value. See the reference for the DialDef values.
#DATA
word Knob1Info 10, // Top-Left X-position
10, // Top-Left Y-position
152, // Width
129, // Height
87, // Knob centre X-position
80, // Knob centre Y-position
38, // Knob radius
135, // Rotation starting angle
405, // Rotation ending angle
0, // Minimum value
100, // Maximum value
0x0, // Background color
0x52AA, // Knob color
5, // Bevel thickness
0xB5B6, // Bevel gradient color 1 (Left side)
0x3186, // Bevel gradient color 2 (Right side)
200, // Starting angle for Partition 2
300, // Starting angle for Partition 3
0x280, // Partition 1 low color
0x528A, // Partition 2 low color
0x5800, // Partition 3 low color
0x7E0, // Partition 1 high color
0xFFE0, // Partition 2 low color
0xF800, // Partition 3 low color
12, // Indicator ticks offset distance
3, // Indicator size 1 (Radius/Width of circle, triangle or rectangle)
6, // Indicator size 2 (Length of line, triangle or rectangle)
0xF800, // Knob pointer color
3, // Knob pointer size 1 (Radius/Width of circle, triangle or rectangle)
30, // Knob pointer size 2 (Length of line, triangle or rectangle)
0xFFFF, // Knob indicator label text color
2, // Knob indicator label font style
22, // Knob indicator label offset distance
10, // Number of indicator labels
0, /*Labels*/ // Pointer to string indicator labels (Numeric labels if zero (0))
2, // Caption font style
0xFFFF, // Caption text color
-15, // Caption horizontal offset from knob centre
50, // Caption vertical offset from knob centre
Caption, // Knob Caption text
(0 + 0 + 0) // Option bits (See Widget Parameter Data Block Option Bits)
byte Caption "KNOB\0" // Caption string (Use null terminator "\0" to end string)
byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0" // Label text strings (Use null terminator "\0" as separators)
#END
DIAL_F_LABEL_STRINGS //Set bit for dial indicator string (default is numeric)
DIAL_F_BG_TRANSPARENT //Set bit for widget transparency
DIAL_F_HANDLE_CIRCLE //Set bit for circular knob pointer style
DIAL_F_HANDLE_TRIANGLE //Set bit for triangular knob pointer style
DIAL_F_HANDLE_RECTANGLE //Set bit for rectangular pointer style
DIAL_F_HANDLE_LINE //Set bit for line pointer style
DIAL_F_INDICATOR_CIRCLE //Set bit for circular dial indicator style
DIAL_F_INDICATOR_TRIANGLE //Set bit for triangular dial indicator style
DIAL_F_INDICATOR_RECTANGLE //Set bit for rectangular dial indicator style
DIAL_F_INDICATOR_LINE //Set bit for line dial indicator style
Syntax: gfx_Dial(value, &DialRam, &DialDef);
Arguments | Description |
---|---|
value | A value (usually a constant) specifying the current frame of the widget. |
&DialRam | A pointer to a variable array for widget utilization. |
&DialDef | A pointer to the Data Block holding the widget parameters. |
Returns: None
Example
var frame;
var Knob1Ram[10];
#DATA
word Knob1Info 10, 10, 152, 129, 87, 80, 38, 135, 405, 0, 100, 0x0,
0x52AA, 5, 0xB5B6, 0x3186, 200, 300, 0x280, 0x528A, 0x5800, 0x7E0, 0xFFE0,
0xF800, 12, 3, 6, 0xF800, 3, 30, 0xFFFF, FONT2, 22, 10, Labels, FONT2,
0xFFFF, 15, 50, Knob1Caption, (0 + DIAL_F_HANDLE_CIRCLE + DIAL_F_INDICATOR_LINE)
byte Labels "Text1\0Text2\0Text3\0Text4\0Text5\0"
byte Knob1Caption "KNOB\0"
#END
func main()
gfx_ Dial(frame , Knob1Ram , Knob1Info); // Dial Internal Widget
repeat forever
endfunc
gfx_Gauge
Draw a Gauge as defined by GaugeDef (if required), using GaugeRam positioning at position value. See the reference for the GaugeDef values.
#DATA
word Gauge1Info 10, // Top-Left X-position
10, // Top-Left Y-position
181, // Gauge length
59, // Gauge width
11, // Number of Gauge bars
0, // Minimum gauge value
100, // Maximum gauge value
10, // Bar thickness
5, // Bar spacing
0x18E3, // Inter 'bar' gap color
0x280, // Partition 1 low colour
0x7E0, // Partition 1 active colour
0x5280, // Partition 2 low colour
0xFFE0, // Partition 2 active colour
0xA000, // Partition 3 low colour
0xF800, // Partition 3 active colour
8, // Partition 2 starting bar
5, // Partition 3 starting bar
(0) // Gauge Option bits
#END
Syntax: gfx_Gauge(value, &GaugeRam, &GaugeDef);
Arguments | Description |
---|---|
value | A value (usually a constant) specifying the current frame of the widget. |
&GaugeRam | A pointer to a variable array for widget utilization. |
&GaugeDef | A pointer to the Data Block holding the widget parameters. |
Returns: None
Example
var frame;
var Gauge1Ram[10];
#DATA
word Gauge1Info 10, 10, 181, 59, 11, 0, 100, 10, 5, 0x18E3, 0x280, 0x7E0,
0x5280, 0xFFE0, 0xA000, 0xF800, 8, 5, (GAUGE_F_HORZ + GAUGE_F_TOPRIGHT)
#END
func main()
gfx_Gauge(frame, Gauge1Ram, Gauge1Info); // Gauge Internal Widget
repeat forever
endfunc
Note
For optimal appearance, calculate number of bars for given height first using this formula:
bars = ( (gauge height / 2) + (spacing / 2) + 1) / ( (bar thickness / 2) + (spacing / 2) + 2)
then calculate exact height given the calculated ticks:
height = bars * ( (bar thickness / 2) + (spacing / 2) +2) – (spacing / 2) - 1
gfx_LedDigits
Draw a series of 7 segment Led Digits as defined by LedDigitDef, using LedDigitRam positioning at position value. See the reference for LedDigitDef values.
#DATA
word Digits1Info 10, // Top-Left X-position
10, // Top-Left Y-position
66, // Widget width (Used only for touch region)
106, // Widget height (Used only for touch region)
2, // Number of digits
0, // Separator placement (To disable separator use -1)
0, // Spacing distance between each digits
5, // Digit size
0xFFFF, // LED segment ON color
0x630C, // LED segment OFF color
(0 + 0 + 0) // Option bits (See Widget Parameter Data Block Option Bits)
#END
LEDDIGITS_F_GENERAL //Set bit for LED digit general format
LEDDIGITS_F_FIXED //Set bit for LED digit fixed format
LEDDIGITS_F_SCIENTIFIC //Set bit for LED digit scientific format
LEDDIGITS_F_INT16 //Set bit for 16-bit Integer LED digit format
LEDDIGITS_F_INT32 //Set bit for 32-bit Integer LED digit format
LEDDIGITS_F_FLOAT //Set bit for Float LED digit format
LEDDIGITS_F_UNSIGNED //Set bit for unsigned LED digit format
LEDDIGITS_F_SIGNED //Set bit for signed LED digit format
LEDDIGITS_F_LEADING0 //Set bit for setting leading digits as zeroes
LEDDIGITS_F_LEADINGb //Set bit for setting leading digits as blanks
LEDDIGITS_F_DP_DOT //Set bit for using dots as separator
LEDDIGITS_F_DP_COMMA //Set bit for using commas as separator
Syntax: gfx_LedDigits(value, &LedDigitRam, &LedDigitDef);
Arguments | Description |
---|---|
value | For the int16 format, a value specifying the current frame of the widget. For other formats (Int32 and Float) are both 32-bits therefore value is the address of a two element array containing the value. |
&LedDigitRam | A pointer to a variable array for widget utilization. |
&LedDigitDef | A pointer to the Data Block holding the widget parameters. |
Returns: None
Example
var value;
var Digits1RAM [12];
#DATA
word Digits1Info 10, 10, 66, 106, 2, 0 , 0, 5, 0xFFFF,
0x630C,(LEDDIGITS_F_LEADING0 | LEDDIGITS_F_UNSIGNED | LEDDIGITS_F_INT16 | LEDDIGITS_F_DP_DOT)
#END
func main()
gfx_ LedDigits value , Digits1RAM , Digits1Info ); // LED digit Widget
repeat forever
endfunc
gfx_LedDigit
Draws a single 7 segment led Digit at x, y of size digitsize using oncolour and offcolour. The value can be 0-9 (0-9), A-F (0x0a-0x0f), blank(0x10) and - (0x11). Or value with LEDDIGIT_F_SHOW_DP to show a decimal point, LEDDIGIT_F_DP_COMMA to make the Decimal point a comma and LEDDIGIT_F_DP_ON to turn the decimal point on LEDDIGIT_F_SET_SEGMENTS can be used to turn value into a series of bits to turn on individual segments e.g. LEDDIGIT_F_SET_SEGMENTS + 9 will turn on the top and bottom segments. Again LEDDIGIT_F_SHOW_DP and LEDDIGIT_F_DP_COMMA can be used, but in this case the DP is the 8th segment.
Syntax: gfx_LedDigit(x, y, digitsize, oncolour, offcolour, value);
Arguments | Description |
---|---|
x, y | x- and y-coordinates of position. |
digitsize | Size of digit. |
oncolour | Color when status is on. |
offcolour | Color when status is off. |
value | Value to show. |
Returns: None
Example
gfx_Slider5
Draw a Slider as defined by SliderDef (if required), using SliderRam positioning at position value. See the reference for the SliderDef values
#DATA
word Slider1Info 10, // Top-Left X-position
10, // Top-Left Y-position
250, // Widget length
40, // Widget width
(0 + 0 + 0), // Option bits (See Widget Parameter Data Block Option Bits)
0, // Minimum value
100, // Maximum value
0x1082, // Base color
0x0, // Track fill color (from Right/Top to current position)
0x7E0, // Track fill color (from Left/Bottom to current position)
30, // Total Marker partition for Top/Left Side (0 for no ticks)
30, // Total Marker partition for Bottom/Right Side (0 for no ticks)
2, // Minor ticks between each major ticks T/L Side (0 for small ticks)
2, // Minor ticks between each major ticks B/R Side (0 for small ticks)
10, // Major tick length
0x7E0, // Major tick color
5, // Minor tick length
0x7E0, // Minor tick color
FONT3, // Value indicator font style
0xFFE0, // Value indicator text color
0x1082, // Slider knob bevel gradient color 1
0x9CD3, // Slider knob bevel gradient color 2
GRAD_DOWN, // Slider knob bevel gradient style
0x1082, // Slider knob face gradient color 1
0x9CD3, // Slider knob face gradient color 2
GRAD_UP // Slider knob face gradient style
#END
Syntax: gfx_Slider5(value, &SliderRam, &SliderDef);
Arguments | Description |
---|---|
value | A value |