
`

ViSi-Genie: Arduino

Update Diablo16 Program

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

DOCUMENT DATE: 9th MAY 2020

DOCUMENT REVISION: 1.0

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00266

Page 2 of 11 www.4dsystems.com.au

Description

This application note shows how to update a ViSi-Genie program running in

a Diablo16 display module.

Before getting started, the following are required:

Hardware

- Any 4D Systems display module powered by the Diablo16 processor

- Programming Adaptor for target display module

- 2 uSD Card or 1 uSD card for 4D Display and 1 SD card for Arduino

- USB Card Reader

- Arduino Mega with uSD/SD shield

Software

- Workshop4

- This requires the PRO version of Workshop4

This application note comes with two (2) ViSi-Genie projects as initial and

updated projects.

Note: Using a non-4D programming interface could damage the processor
and void the warranty.

Content

Description .. 2

Content ... 2

Application Overview ... 3

Setup Procedure .. 3

Create a New Project ... 3

Design the ViSi-Genie Projects.. 4

Opening Project Files .. 4

Magic Object Discussion ... 5

Design the Arduino Project .. 7

SD Card Access .. 7

Handling Update Request ... 7

Setting File Parameters ... 8

Sending the 4xe File ... 9

Handling Unsuccessful Attempts ... 10

Run the Program ...10

Proprietary Information ..11

Disclaimer of Warranties & Limitation of Liability11

https://4dsystems.com.au/products/4d-intelligent-hmi-display-modules/gen4-hmi-display-modules
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/workshop4

APPLICATION NOTES 4D-AN-00266

Page 3 of 11 www.4dsystems.com.au

Application Overview

The Diablo16 processor has six flash banks (Bank 0 to Bank 5), each of which

has a capacity of 32 kB. As of WS4 version 4.5.0.8, it is now possible for the

user to specify the destination flash bank of a ViSi-Genie program. This was

not possible in previous versions of Worskhop4. Prior to version 4.5.0.8,

bank 0 was the only possible flash memory destination of a ViSi-Genie

program.

The purpose of this application note is to show how to switch between

banks using an Arduino as a host controller. This application note uses the

ViSi-Genie environment, together with Genie-Magic. Thus, the PRO version

of WS4 is required. Thus, the PRO version of WS4 is required. This

application note is applicable to Diablo16 display modules only.

For more information on the basics of the multiple flash bank feature in ViSi-

Genie, refer to the application note ViSi-Genie Flash Banks.

Setup Procedure

For instructions on how to launch Workshop4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

https://4dsystems.com.au/blog/4d-an-00106/
https://4dsystems.com.au/blog/4d-an-00106/

APPLICATION NOTES 4D-AN-00266

Page 4 of 11 www.4dsystems.com.au

Design the ViSi-Genie Projects

For this application note, a gen4-uLCD-35DCT-CLB will be used for the

project. The same procedure is applicable for any Diablo16 displays. Also,

this application note comes with zip files which contain demo projects

needed for the discussions.

Opening Project Files

Open the project files inside the folders “Initial” and “Update”. It can be

noticed that the projects have similar filenames. This is important since the

filename of the graphics files (DAT and GCI files) is dependent on the

project’s filename. This also denotes that the project is simply being

updated.

Note: This is only applicable when updating the program running without

any changes to the graphics design.

Note that the projects contain magic objects and, so Workshop4 PRO is

needed to open them. Both projects should contain the objects shown

below.

The first version of the project is the one in the folder named “Initial”. This

will be the initial program in flash bank 1 of the display.

This is purposely designed to act differently than the updated version. In this

case, the Smart Slider on the left (SmartSlider0) has been set to update the

Smart Gauge on the right (SmartGauge1)

while the Smart Slider on the right (SmartSlider1) has been set to update the

Smart Gauge on the left (SmartGauge0).

APPLICATION NOTES 4D-AN-00266

Page 5 of 11 www.4dsystems.com.au

As you may have noticed, the first project seems to be either odd or wrong.

So for the updated version which will be loaded to the Arduino’s uSD, the

Smart Slider on the left (SmartSlider0) will update the Smart Gauge on the

left (SmartGauge0)

while the Smart Slider on the right (SmartSlider1) will update the Smart

Gauge on the right (SmartGauge1).

Both projects also contain a Winbutton that simply reports an event to the

host.

This Winbutton when pressed by user will tell the Arduino host that it wants

an update.

Magic Object Discussion

A magic object is essential for this application. This object will be utilized for

setting the current mode of the display’s update routine, receiving

information about the 4xe file and receiving the file itself from the host.

#CONST

 // Display Replies

 ERR

 OK

 COMPLETE

#END

Shown are the replies sent by the display in response to the Arduino sending

magic double bytes.

APPLICATION NOTES 4D-AN-00266

Page 6 of 11 www.4dsystems.com.au

The display will reply ERR if the display had an error when writing the data

into a temp file. Otherwise, it will send an OK or COMPLETE response. The

COMPLETE response is only sent by the display if all the packets has been

received successfully.

case WRITE_MAGIC_BYTES:

 if (newVal != 8)

 seroutX(NAK);

 break;

 endif

 var i, j;

 txt_MoveCursor(5, 0);

 for (i : = 0; i < 4; i++) // change endianness

 j : = i * 2 ;

 fileData[i] : = (ptr[j + 1] << 8) + ptr[j] ;

 next

 file_Erase("temp0.4xe");

 seroutX(ACK);

 break;

The code shown is for receiving the properties of the files that are being sent

by the Arduino to the Diablo16 display using magic bytes.

As shown, the display will send a NAK if the Arduino sends an incomplete or

an excessive data. Otherwise, the data sent will be processed and stored to

an array and an ACK will be sent back to the host.

case WRITE_MAGIC_DBYTES:

 txt_MoveCursor(0, 0);

 if (fileData[3] == -1)

 print("File Information hasn't been set");

 SendReport(REPORT_OBJ, tMagicObject, 0, ERR);

 break;

 endif

 var file, rem;

 file : = file_Open("temp0.4xe", 'a');

 if (!file_Error())

 fileSize += newVal * 2;

 rem : = fileData[0] - fileSize;

 file_Write(str_Ptr(ptr),newVal*2-((rem==-1)? 1: 0), file);

 print("Remaining Bytes: ",((rem==-1) ? 0 : rem), " ");

 if (rem <= 0)

 file[FILE_DATE] : = fileData[1];

 file[FILE_TIME] : = fileData[2];

 file_Close(file);

 var buf[10];

 to (buf); print("RunBank", [DEC]fileData[3], ".4xe");

 if (file_Erase(str_Ptr(buf)))

 if (file_Rename("temp0.4xe", str_Ptr(buf)))

 fileData[0] : = 0;

 fileData[1] : = 0;

 fileData[2] : = 0;

 fileData[3] : = -1;

 print("\nFile Completed");

 SendReport(REPORT_OBJ, tMagicObject, 0, COMPLETE);

 endif

 endif

 return;

 endif

 SendReport(REPORT_OBJ, tMagicObject, 0, OK);

 file_Close(file);

 return;

 endif

 print("Error Opening File");

 SendReport(REPORT_OBJ, tMagicObject, 0, ERR);

 break;

The code presented handles the magic double bytes from the host. This is

where the display accepts the data and saves it to a temporary file which is

renamed upon completion.

This case may send an ERR, OK or COMPLETED to the host controller

depending on the status.

APPLICATION NOTES 4D-AN-00266

Page 7 of 11 www.4dsystems.com.au

Design the Arduino Project

Arduino Due was used for this project but this application note procedure

should work similarly with other versions.

This application note uses the version of genieArduino library found here.

Please refer to the Arduino website for their guide on how to install a library.

SD Card Access
The Arduino will need access to a memory storage where it can read the

updated 4xe file which is loaded using ViSi Genie upload to uSD Card

functionality. In this case, an SD card is used.

The updated 4xe file may be moved to a folder or stay in the root directory.

In this application, it is moved to a folder named “Updates”.

Handling Update Request

The Arduino shall wait for a request from the display which in this case is

handled by a Winbutton.

else if (Event.reportObject.cmd == GENIE_REPORT_EVENT) {

 if (Event.reportObject.object == GENIE_OBJ_WINBUTTON) {

 if (Event.reportObject.index == 0) {

 updateDisplay = true;

 }

 }

}

This is received by the event handler which is attached to the library using:

genie.AttachEventHandler(myGenieEventHandler);

As shown above, a variable updateDisplay is set as true. In the main loop of

the sketch, this will be processed:

if (updateDisplay) {

 switch (update4xe("/Updates")) {

 case USD_FAILED:

 case GENIE_NACK:

 case GENIE_FAILED:

 Serial.println("Retrying...");

 break;

 case GENIE_COMPLETED:

 updateDisplay = false;

 Serial.println("Update Successful");

 break;

 default:

 break;

}

That is only if the display is online. The updateDisplay will be set to false

once the update is finished.

If successful, the Arduino will reset the display using its reset pin.

void resetDisplay() {

 // Set Pin to Output (4D Arduino Adaptor V2 – Disp. Reset)

 pinMode(RESETLINE, OUTPUT);

 digitalWrite(RESETLINE, 1); // Reset the Display via D4

 unsigned long startTime = millis();

 Serial.println("Resetting...");

https://github.com/4dsystems/ViSi-Genie-Arduino-Library-BETA
https://www.arduino.cc/en/Guide/Libraries

APPLICATION NOTES 4D-AN-00266

Page 8 of 11 www.4dsystems.com.au

 while (genie.online()) genie.DoEvents();

 // Execute another DoEvents to process Disconnect Flag

 genie.DoEvents();

 Serial.print("Disconnected after ");

 Serial.print(millis() - startTime);

 Serial.println("ms");

 digitalWrite(RESETLINE, 0); // unReset the Display via D4

 Serial.println("\nWaiting for reconnect");

 genie.timeout(1250); // Return timeout to default

 genie.recover(500);

 while (!genie.online()) {

 genie.DoEvents(); // Wait until display is ready

 }

 genie.recover(50);

 Serial.println("\nDisplay is ready");

}

Notice that it is waiting until the display is flagged as disconnected before

releasing the reset pin and checking if the display has reconnected.

Setting File Parameters

The update starts with telling the display about the 4xe file. This includes

the file size, date and time. This should also include the flash bank that is

being updated.

This application note will not discuss in detail how to retrieve those

information from the file. However, the Arduino sketch included with this

application note uses a function that copies the file size, date and time to an

integer array.

The flash bank to which the file should be copied to is passed to the

update4xe function.

int update4xe(char *directory, uint8_t bank = 1)

The directory that contains the update file should also be passed. Note that

if the bank is not stated when using this function, it will simply default to

bank 1.

The function will search for the appropriate RunbankN.4xe file. N represents

the bank number which is from 1 to 5.

This is read afterwards by the function getDetails.

bool getDetails(char* filename, uint16_t details[3])

This returns true if the file is found and the parameters has been read.

Otherwise, this will return false.

char *bankFile = "RunBankN.4xe";

uint16_t versionDetails[4];

bankFile[7] = bank + '0';

if (!getDetails(bankFile, versionDetails)) {

 return USD_FAILED;

}

versionDetails[3] = bank;

As shown above, the filename is set according to the bank as passed by the

user to the function update4xe. It can also be noticed that it will return

USD_FAILED if the details wasn’t retrieved successfully. Otherwise, it

continues and sets the value of the last index of array versionDetails to the

bank set by the user.

APPLICATION NOTES 4D-AN-00266

Page 9 of 11 www.4dsystems.com.au

Afterwards, it sends magic bytes to the display.

if(genie.WriteMagicBytes(0,(uint8_t*)versionDetails,8)!=1){

 Serial.println("Failed to set parameters");

 return GENIE_NACK;

}

As shown above, the function update4xe returns GENIE_NACK if no

acknowledgement from the display has been received.

After successfully setting the parameters, the file is reopened and prepared

for reading.

int packets = versionDetails[0] / MAX_SIZE;

int lastPacketSize = versionDetails[0] % MAX_SIZE;

if (!file.open(&ipFold, bankFile, O_READ)) {

 Serial.println("Failed to open file");

 return USD_FAILED;

}

Serial.println("File Ready to be Copied");

Sending the 4xe File
If setting the parameters is successful, packets of data will be sent to the

display as magic double bytes until the copy completes.

for (int i = 0; i < packets; i++) {

 Serial.print("Packets Remaining: ");

 Serial.println(packets - i + ((lastPacketSize) ? 1 : 0));

 uint8_t data[MAX_SIZE] = {0};

 file.read(data, MAX_SIZE);

 do {

 magicReply = NO_REPLY;

 waitingForReply = true;

 uint8_t result = genie.WriteMagicDBytes(0, (uint16_t*)data,

255, GENIE_REPORT_OBJ); // Wait for GENIE_REPORT_OBJ reply

 if (result == -1) {

 Serial.println("Got timeout. Consider increasing timeout

using genie.timeout()");

 file.close();

 return GENIE_FAILED;

 }

 genie.DoEvents(); // Process GENIE_REPORT_OBJ message

 if (waitingForReply) { // If the GENIE_REPORT_OBJ is not from

MagicObject0

 Serial.println("Reply wasn't from MagicObject0.");

 Serial.println("Try stopping all ReadObject functions and

clearing the RX Buffer before executing update4xe function.");

 file.close();

 return GENIE_FAILED;

 }

 if (magicReply == ERR) {

 Serial.println("Display sent error message");

 }

 } while (magicReply == ERR);

}

if (lastPacketSize) {

 Serial.print("Packets Remaining: "); Serial.println(1);

 uint8_t data[lastPacketSize];

 memset(data, 0, lastPacketSize);

 file.read(data, lastPacketSize);

 do {

 magicReply = NO_REPLY;

 waitingForReply = true;

 uint8_t result = genie.WriteMagicDBytes(0, (uint16_t*)data,

(uint8_t)(lastPacketSize / 2 + lastPacketSize % 2),

GENIE_REPORT_OBJ); // Wait for GENIE_REPORT_OBJ reply

 if (result == -1) {

 Serial.println("Got timeout. Consider increasing timeout

using genie.timeout()");

 file.close();

 return GENIE_FAILED;

 }

 genie.DoEvents(); // Process GENIE_REPORT_OBJ message

 if (waitingForReply) { // If the GENIE_REPORT_OBJ is not from

MagicObject0

APPLICATION NOTES 4D-AN-00266

Page 10 of 11 www.4dsystems.com.au

 Serial.println("Reply wasn't from MagicObject0.");

 Serial.println("Try stopping all ReadObject functions and

clearing the RX Buffer before executing update4xe function.");

 file.close();

 return GENIE_FAILED;

 }

 if (magicReply == ERR) {

 Serial.println("Display sent error message");

 }

 } while (magicReply == ERR);

}

file.close();

While doing so, the function may return GENIE_FAILED under certain

conditions.

If everything has been successful until this point, the function will check if

the last reply received says it has completed.

if (magicReply != COMPLETE) {

 Serial.println("Display didn't send complete message");

 return GENIE_FAILED;

}

If not, the function will return GENIE_FAILED. Otherwise, it will reset the

display and return GENIE_COMPLETED as shown below.

resetDisplay();

return GENIE_COMPLETED;

Handling Unsuccessful Attempts

Errors during an update may exist. These errors can be from accessing the

uSD card or an error reply from the display.

if (updateDisplay) {

 switch (update4xe("/Updates")) {

 case USD_FAILED:

 case GENIE_NACK:

 case GENIE_FAILED:

 Serial.println("Retrying...");

 break;

 case GENIE_COMPLETED:

 updateDisplay = false;

 Serial.println("Update Successful");

 break;

 default:

 break;

}

As shown above, if any error occur, it will simply retry continuously.

Otherwise, if the update is successful, it will set the updateDisplay variable

to false. This can easily be modified to meet user requirements.

Run the Program

For instructions on how to save a ViSi-Genie project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note .

• ViSi-Genie Getting Started - First Project for Diablo16 Display Modules

https://4dsystems.com.au/blog/4d-an-00106/

APPLICATION NOTES 4D-AN-00266

Page 11 of 11 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Design the ViSi-Genie Projects
	Opening Project Files
	Magic Object Discussion

	Design the Arduino Project
	SD Card Access
	Handling Update Request
	Setting File Parameters
	Sending the 4xe File
	Handling Unsuccessful Attempts

	Run the Program
	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

