
`

ViSi-Genie: Raspberry Pi

Switching Banks

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

DOCUMENT DATE: 9th MAY 2020

DOCUMENT REVISION: 1.0

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00264

Page 2 of 11 www.4dsystems.com.au

Description

This application note shows how to switch between banks of the Diablo16

processor using a Raspberry Pi Host.

Before getting started, the following are required:

Hardware

- Any 4D Systems display module powered by the Diablo16 processor

- Programming Adaptor for target display module

- uSD Card

- USB Card Reader

- Raspberry Pi

Software

- Workshop4

- This requires the PRO version of Workshop4

Note: Using a non-4D programming interface could damage the processor

and void the warranty.

Content

Description .. 2

Content ... 2

Application Overview ... 3

Setup Procedure .. 3

Create a New Project ... 3

Design the Project .. 4

Opening Project Files .. 4

Project 0 Objects ... 5

Project 1 Objects ... 6

Design the Raspberry Pi Projects .. 6

Accessing Raspberry Pi .. 6

Disabling Serial Console ... 7

Download and Install geniePi Library .. 7

C Code Decision ... 7

Run the Program .. 9

Downloading the ViSi-Genie Projects ... 9

Compile and Run the C Program ..10

Proprietary Information ..11

Disclaimer of Warranties & Limitation of Liability11

https://4dsystems.com.au/products/4d-intelligent-hmi-display-modules/gen4-hmi-display-modules
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/products/accessories
https://4dsystems.com.au/workshop4

APPLICATION NOTES 4D-AN-00264

Page 3 of 11 www.4dsystems.com.au

Application Overview

The Diablo16 processor has six flash banks (Bank 0 to Bank 5), each of which

has a capacity of 32 kB. As of WS4 version 4.5.0.8, it is now possible for the

user to specify the destination flash bank of a ViSi-Genie program. This was

not possible in previous versions of Worskhop4. Prior to version 4.5.0.8,

bank 0 was the only possible flash memory destination of a ViSi-Genie

program.

The purpose of this application note is to show how to switch between

banks using a Raspberry Pi as a host controller. This application note uses

the ViSi-Genie environment, together with Genie-Magic. Thus, the PRO

version of WS4 is required. This application note is applicable to Diablo16

display modules only.

For more information on the basics of the multiple flash bank feature in ViSi-

Genie, refer to the application note ViSi-Genie Flash Banks.

Setup Procedure

For instructions on how to launch Workshop4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note.

• First ViSi-Genie Project for Diablo16

Create a New Project

For instructions on how to create a new ViSi-Genie project, please refer to

the section “Create a New Project” of the application note

• First ViSi-Genie Project for Diablo16

http://4dlabs.com.au/4dls-an-00041.html
http://www.4dsystems.com.au/blog/4D-AN-00106/
http://www.4dsystems.com.au/blog/4D-AN-00106/

APPLICATION NOTES 4D-AN-00264

Page 4 of 11 www.4dsystems.com.au

Design the Project

For this application note, a gen4-uLCD-35DCT-CLB will be used for the

project. The same procedure is applicable for any Diablo16 displays. Also,

this application note comes with zip files which contain demo projects

needed for the discussions.

Opening Project Files

Open the project files inside the zip files “BnkPi0.zip” and “BnkPi1.zip”.

Note that the projects contain magic objects, so WS4 PRO is needed to open

them. The project “BnkPi0” should contain the objects shown below. The

target bank for project “BnkPi0” is bank 0.

Note that these objects do not occupy the whole screen area. This is in

consideration of easily testing the project with smaller displays. You may

resize the project if you desire.

The project “BnkPi1”, on the other hand, is shown below. The target bank

for this project is bank 1.

Again, please note that these objects do not occupy the whole screen area

in consideration of easily testing the project with smaller displays. You may

resize the project if you desire.

Both projects will communicate with the Raspberry Pi at 115200 baud.

APPLICATION NOTES 4D-AN-00264

Page 5 of 11 www.4dsystems.com.au

Project 0 Objects

The first project contains the following objects:

The input objects present in the project are a Winbutton and a Slider.

The Winbutton sends an event to the host controller that should give the

Raspberry Pi a signal that the user wants to navigate to the other project.

Note: It is important for applications which utilize multiple flash banks

with different ViSi Genie projects that the host controller knows what flash

bank the display is currently at.

If the Winbutton’s event is successfully received, the host will reply by

issuing a WRITE_OBJ command to a MagicObject. The MagicObject will then

run the appropriate flash bank stated in the host’s command if the flash

bank is valid. Otherwise, the display will reset.

func rMagicObject0(var action, var object, var newVal, var *ptr)

 var returnFB := 0;

 if(action == WRITE_OBJ)

 seroutX(ACK);

 pause(5);

 returnFB := flash_Run(newVal);

 if(returnFB)

 gfx_MoveTo(0,0);

 if(returnFB == -1)

 print("invalid bank number");

 else if(returnFB == -2)

 print("no valid program in the selected bank");

 else

 print("run bank not successful, unknown error");

 endif

 print("\nrestarting...");

 pause(2000);

 SystemReset();

 endif

 else if(action == READ_OBJ)

 SendReport(REPORT_OBJ, tMagicObject, 0,flash_Bank()) ;

 // let the host know the current bank

 endif

endfunc

As seen in the code above, the MagicObject can also be read and it will send

a REPORT_OBJ stating the current flash bank that is running.

SendReport(REPORT_EVENT, tMagicObject, 0, flash_Bank()) ;

The code above can also be found in MagicCode0 which is set to Post Genie

Initialize. This sends a signal to the host that the display is ready and what

bank it is currently running.

The Slider will simply report an OnChanged Event. Once received, the host

will update the LedDigits object accordingly.

The other remaining objects act as outputs that will be controlled by the

host.

APPLICATION NOTES 4D-AN-00264

Page 6 of 11 www.4dsystems.com.au

Project 1 Objects

The second project contains the following objects:

The input objects present in the project are a Winbutton and a SmartSlider.

It can be noticed that a SmartSlider and a SmartGauge have replaced the

Slider and the Coolgauge from the previous project.

This project is very similar to the previous one. The SmartSlider doing the

Slider’s function while the SmartGauge performing the Coolgauge’s

function.

The Winbutton will again send a REPORT_EVENT to let the host know that it

should move to the other project.

The MagicCode and MagicObject from the first project is also included in

this one.

The other remaining objects, similar to the previous project, will act as

outputs that will be controlled by the host.

Design the Raspberry Pi Projects

Raspberry Pi 3 was used for this project, but this application note procedure

should work similarly with other versions. The Raspberry Pi used in this

application runs on Raspbian OS.

The latest Raspbian OS can be downloaded here. You can refer to their

documentation on how to load the operating system to your Raspberry Pi’s

SD card.

Once the Raspbian OS is loaded into the Raspberry Pi, you will need to either

use a monitor or keyboard to control the RPi directly or use SSH to access it

remotely. For the latter, you will need to enable SSH before using it.

Accessing Raspberry Pi

If a monitor and keyboard is accessible, it is easiest to enable SSH by running

Raspberry Pi Configuration. Then, you will be able to remotely control it

afterwards if you ensure that your computer and the Raspberry Pi is

connected to the same network either using Wi-Fi or Ethernet.

You can refer to Raspberry Pi’s documentations for the detailed procedure.

The next steps will be using SSH remote access, but should you choose to

access the Raspberry Pi directly. The general procedure should be very

similar.

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/

APPLICATION NOTES 4D-AN-00264

Page 7 of 11 www.4dsystems.com.au

Disabling Serial Console

By default, the Serial Port is being utilized by Raspbian as a Serial Console.

You will need to disable this feature when using the serial port for other

applications like this application note project.

Detailed procedure can be found here.

Download and Install geniePi Library

The geniePi library is available here.

You can simply download the library as a zip file or use clone the repository

using git. In this application note, the zip file is downloaded and copied to

the Raspberry Pi using FTP.

Once you have a copy of the library in your Raspberry Pi, you can install it by

using the commands:

cd ViSi-Genie-RaspPi-Library

make

sudo make install

C Code Decision

A typical Raspberry Pi ViSi-Genie application writes values to the display

widgets and receives events from user interaction from the display.

This application writes to a Coolgauge and a UserLed continuously when the

display is at the first project and writes to a SmartGauge and a UserLed

continuously when the display is at the second project.

This is being handled by a thread that runs parallel to the main thread.

if (!changingBanks) {

 if (currentBank == PROJECT0) {

 //write to Coolgauge0

 genieWriteObj(GENIE_OBJ_COOL_GAUGE, 0x00, gaugeVal[0]);

 } else if (currentBank == PROJECT1) {

 //write to SmartGauge0

 genieWriteObj(GENIE_OBJ_ISMARTGAUGE, 0x00, gaugeVal[1]);

 }

 gaugeVal[currentBank] += step[currentBank];

 //increment or decrement

 genieWriteObj(GENIE_OBJ_USER_LED,0,gaugeVal[currentBank]%2);

 if (gaugeVal[currentBank] == 99) step[currentBank] = -1;

 if (gaugeVal[currentBank] == 0) step[currentBank] = 1;

 usleep(10000); //10ms delay

}

https://www.raspberrypi.org/documentation/configuration/uart.md
https://github.com/4dsystems/ViSi-Genie-RaspPi-Library

APPLICATION NOTES 4D-AN-00264

Page 8 of 11 www.4dsystems.com.au

The code checks if the display is not changing banks before writing to the

appropriate objects (Gauges and Userled).

else {

 int i;

 for (i = 0; changingBanks ; i++) {

 printf(".");

 usleep(10000);

 if (changingBanks && (i % 50 == 0))

 {

 currentBank = genieReadObj(GENIE_OBJ_MAGIC, 0x00);

 if (currentBank != -1) {

 // Query current bank if post genie report event //

current bank wasn't receive after a second);

 changingBanks = false;

 writePrevValues();

 }

 }

 }

}

Otherwise, every 500ms that the display couldn’t notify the Raspberry Pi

that it is ready, the Raspberry Pi will send a READ_OBJ command. If the

display replies, the Raspberry Pi will update the display with the previous

values of the active bank.

The REPORT_EVENT commands sent by the display are handled as described

in the previous sections. This one checks if the event is from Slider0 then

update the LedDigits with the value received.

if (reply->object == GENIE_OBJ_SLIDER) {

//check if the object byte is that of a slider

 if (reply->index == 0) {

 //check if the index byte is that of Slider0

 sliderVal = reply->data; //write to the LED digits object

 genieWriteObj(GENIE_OBJ_LED_DIGITS, 0x00, sliderVal);

 }

}

This one checks if the event is from SmartSlider0 then update the LedDigits

with the value received.

else if (reply->object == GENIE_OBJ_ISMARTSLIDER)

{

 if (reply->index == 0) {

 //check if the index byte is that of SmartSlider0

 // write to the LED digits object

 smartSliderVal = reply->data;

 genieWriteObj(GENIE_OBJ_LED_DIGITS,0, smartSliderVal);

 }

}

Both above codes are updating a global variable that may be used when

writing to the display the previous values when a bank switch is done.

APPLICATION NOTES 4D-AN-00264

Page 9 of 11 www.4dsystems.com.au

This code checks if the event is from Winbutton0. If true, the Raspberry Pi

will tell the display that it is now ready for switching banks by sending a

WRITE_OBJ command to the Magic Object.

else if (reply->object == GENIE_OBJ_WINBUTTON)

{

 if (reply->index == 0) {

 //check if the index byte is that of Winbutton0

 changingBanks = true;

 printf("\nCurrent Bank: Flashbank%d\n", currentBank);

 currentBank =(currentBank==PROJECT0)?PROJECT1:PROJECT0;

 printf("Switching to FlashBank%d\n", currentBank);

 genieWriteObj(GENIE_OBJ_MAGIC, 0, currentBank);

 }

}

Lastly for event handling:

else if (reply->object == GENIE_OBJ_MAGIC) {

 if (reply->index == 0) {

 changingBanks = false;

 currentBank = reply->data;

 writePrevValues();

 }

}

A REPORT_EVENT is sent by the display to the host at the start of both ViSi-

Genie projects to let the host know that it is ready and what bank it is

running from.

The code above handles this event and sets the current bank accordingly

and also writes the previous values to the display. This will also set the flag

changingBanks to false allowing the gauge thread to update the widgets

accordingly.

Run the Program

For instructions on how to save a ViSi-Genie project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

First ViSi-Genie Project for Diablo16

Downloading the ViSi-Genie Projects

Upload the project to the respective flash banks.

You will need to copy both projects’ GCI and DAT files to your uSD Card.

The first project should occupy Bank0 while the second project should

occupy Bank1.

http://www.4dsystems.com.au/blog/4D-AN-00106/

APPLICATION NOTES 4D-AN-00264

Page 10 of 11 www.4dsystems.com.au

Compile and Run the C Program

Included with this application note are the files geniePiBanks.c and Makefile.

Create a directory geniePiBanks.

cd ~

mkdir geniePiBanks

cd geniePibanks

After navigating inside of that folder, copy the Makefile and C file. Compile

the C code by using the command:

make

APPLICATION NOTES 4D-AN-00264

Page 11 of 11 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

	Description
	Content
	Application Overview
	Setup Procedure
	Create a New Project
	Design the Project
	Opening Project Files
	Project 0 Objects
	Project 1 Objects

	Design the Raspberry Pi Projects
	Accessing Raspberry Pi
	Disabling Serial Console
	Download and Install geniePi Library
	C Code Decision

	Run the Program
	Downloading the ViSi-Genie Projects
	Compile and Run the C Program
	Proprietary Information
	Disclaimer of Warranties & Limitation of Liability

