

Visi-Genie Magic: Analog Input

DOCUMENT DATE: 17th March 2020 DOCUMENT REVISION: 1.0

WWW.4DSYSTEMS.COM.AU

Description

This application note demonstrates how to use Analog input of the 4D Display.

Before getting started, the following are required:

Hardware

- Two of Any <u>4D Systems display module</u> powered by any of the following processors:
 - o DIABLO16
 - o PICASO
 - o PIXXI-28/44
- One Programming Adaptor for target display module
- 50k ohm Potentiometer
- 22k ohm, 1/4w resistor

Software

- Workshop4
- This requires the **PRO** version of Workshop4

This application note comes with one (1) Visi Genie projects:

• Visi-Genie-Analog-Input.4DGenie

Note: Using a non-4D programming interface could damage the processor and void the warranty.

Content

Description2
Content2
Application Overview3
Setup Procedure3
Create a New Project3
Design the Project3
Add Angular Meter3
Add Led Digits4
Add Label5
Add Magic Code5
Hardware Connection8
Run the Program8
Proprietary Information9
Disclaimer of Warranties & Limitation of Liability9

Application Overview

Reads the Output Voltage from the Potentiometer and display it using Angular Meter gauge and LED digits, measures up to 5V only.

Setup Procedure

For instructions on how to launch Workshop4, how to open a ViSi-Genie project, and how to change the target display, kindly refer to the section "**Setup Procedure**" of the application note:

- <u>ViSi Genie Getting Started First Project for Picaso Displays</u>
- <u>ViSi Genie Getting Started First Project for Diablo16 Displays</u>
- <u>ViSi-Genie Getting Started First Project for Pixxi</u>

Create a New Project

For instructions on how to create a new **Visi Genie** project, please refer to:

- ViSi Genie Getting Started First Project for Picaso Displays
- <u>ViSi Genie Getting Started First Project for Diablo16 Displays</u>
- <u>ViSi-Genie Getting Started First Project for Pixxi</u>

Design the Project

Add Angular Meter

Go to Gauges tab and add one Angular Meter gauge.

Go to angularmeter0 Properties.

Object Angularmeter0				
Properties Events				
Property		Value		
Name		Angularmeter0		
Alias		Angularmeter0		
Angle		40		
AngleOffse	et	280		
Caption		Voltage		

Set Max value to 5 and Min value to 0.

Set ColorZone Colours.

ColorZone1	dGreen
ColorZone2	ORANGE
ColorZone3	clRed

Set Percent1 to 66 and Percent2 to 20.

Percent1	66
Percent2	20

Angular Meter Gauge Image.

Set Ticks to 100 and Ticks enlarge to 10.

	Ticks	100	
	TicksColor	dWh	nite
	TicksEnlarge	10	
- 16			

Add Led Digits

Go to Digits tab and Add one LED digits.

Go to the Leddigits0 properties then set Decimals to 2 and Digits to 3.

Object	Lec	ldigits0)	
Properti	ies	Event	s	
Propert	y		Valu	ie
Name		Ledo	digits0	
Alias			Ledo	digits0
Color			E	LACK
Decima	s		2	
Digits			3	

Open the Palette then Set Low Colour to BLACK.

Palette

High	dLime	
Low	BLACK	

APPLICATION NOTES

LED digits image.

Add Label

Go to Labels Tab and add one label.

Backgrounds	Buttons	Digits	Gauges	I/O	Inputs	Labels
next 🔨	 New deal is 8 deal 12 lines, of alart of 1 case to 1 case address, entings (

Go to LabelO Properties and set Caption Value to Voltage.

Form Form0	Form0		
Object Label0			
Properties Event	ts		
Property	Value		
Name	Label0		
Alias	Label0		
1 4DGLFont			
BGcolor	BLACK		
Caption	Voltage		

Position the label above the LED digits.

Add Magic Code

Go to Magic tab, click Magic Code two times to create two Magic Codes.

Backgrounds	Buttons	Digits	Gauges	I/O	Inputs	Labels	Magic	F
Event Touch	⊷ Move	Release	KbClr Co	/> xde	BJ			

Go to Object Inspector to check the added Magic Codes which are MagicCode0 and MagicCode1.

Go to MagicCode0 properties and Set InsertPoint to PreGenieInit.

Form	Form0				
Object	t MagicCode0				
Proper	ties	Event	ts		
Proper	rty		Value		
Name			MagicCode0		
Alias			MagicCode0		
Code		MagicCode0.i	nc		
Insert	Point		PreGenieInit		

To open the code for the MagicCode0 click the MagicCode0.inc.

Form Form0					
Object MagicCode0					
Properties Events					
Property	Value				
Name	MagicCode0				
Alias	MagicCode0				
Code	MagicCode0.inc				
InsertPoint	PreGenieInit				

The variable pot_val is use to store the analog input value, set PA3 as the analog Input then start the count down timer from 50 ms using TIMER5. MagicCode0.inc

1	<pre>var pot_val;//variable for</pre>
2	<pre>pin_Set(PIN_ANAVG,PA3);//</pre>
∳3	<pre>sys_SetTimer(TIMER5, 50);/</pre>

Form Form0 ~					
Object MagicCode1 ~					
Properties Events					
Property	Value				
Name	MagicCode 1				
Alias	MagicCode 1				
Code	MagicCode 1.inc				
InsertPoint	MainLoop				

To open the code for the MagicCode1 click the MagicCode1.inc.

Form	For	Form0 ~				
Object	Ma	MagicCode 1				
Properties Events			ts			
Property			Value			
Name			MagicCode 1			
Alias			MagicCode 1			
Code			MagicCode 1.inc			
InsertPoint			MainLoop			

Go to MagicCode1 properties and Set InsertPoint to MainLoop

APPLICATION NOTES

Inside the MainLoop Function. If TIMER5 reaches 0 then start reading analog input PA3, the analog reading is divided by 8 because $4095/(5*100 \text{ ticks/V}) = 8.19 \approx 8.19 \approx 8.19 \approx 11$ is the remainder of 4905/8 - 4905/8.19 = 11. Then input the readings to the angular meter and LED digits using the function WriteObject(object name, index, value). Then start the countdown timer again from 50 ms.

MagicCode 1.inc

1	<pre>if(! sys_GetTimer(TIMER5))//reads alaog in</pre>
2	<pre>pot_val:=pin_Read(PA3);//read analog i</pre>
3	<pre>pot_val:=(pot_val/8);// 4095/5=819, 81</pre>
4	<pre>if(pot_val>=11)</pre>
5	<pre>pot_val:=pot_val - 11;//subtract t</pre>
6	endif
7	<pre>WriteObject(tAngularmeter,0,pot_val);/</pre>
8	<pre>WriteObject(tLeddigits,0,pot_val); //i</pre>
9	<pre>sys_SetTimer(TIMER5, 50);//start count</pre>
4 0	endif

R1 derivation.

Hardware Connection

Run the Program

For instructions on how to save a **Visi-Genie** project, how to connect the target display to the PC, how to select the program destination, and how to compile and download a program, please refer to the section "**Run the Program**" of any of the following application notes:

- <u>ViSi Genie Getting Started First Project for Picaso Displays</u>
- <u>ViSi Genie Getting Started First Project for Diablo16 Displays</u>
- <u>ViSi-Genie Getting Started First Project for Pixxi</u>

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage ('High Risk Activities'). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems' products and devices in 'High Risk Activities' and in any other application is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.