
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi-Genie Magic 32bit LED Digits

DOCUMENT DATE: 29th May 2019

DOCUMENT REVISION: 1.0

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00157

Page 2 of 15 www.4dsystems.com.au

 Description

This application note primarily shows how the Magic Code and Magic

Object objects are used to implement a project that displays 32-bit integer

values on the screen using a LED digits object. The implementation further

requires the use of the following features and functions in combination with

the Magic Code and Magic Object objects:

 String Class Functions

 Image Control Functions

The String Class functions and Image Control functions are functions native

to the Picaso and Diablo16 processors.

Below is a screenshot image of the project used in this application note.

Note 1: Workshop Pro is needed for this application.

Before getting started, the following are required:

 Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-32PTU uLCD-43(PT/PCT)
uLCD-28PTU uLCD-32WPTU

and other superseded modules which support the ViSi Genie

environment

 The target module can also be a Diablo16 touch display

uLCD-35DT uLCD-70DT
uLCD-43DT uLCD-43DCT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 and Picaso processors.

 4D Programming Cable or µUSB-PA5

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/11/4D_Intelligent_Display_Modules/uLCD_43/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/10/4D_Intelligent_Display_Modules/uLCD_32WPTU/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/uSD_2GB/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00157

Page 3 of 15 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview .. 4

Setup Procedure ... 4

Design the Project ... 4

Add Two LED Digits Objects to Form0 .. 4

Add Three Static Text Objects to Form0...................................... 6

Add a Magic Code Object to Form0 .. 6

Add Two Magic Object Objects to Form0 7

Diagrams ... 7

Diagram A – Program Flow 1 .. 7

Diagram B – Program Flow 2 .. 8

Diagram C – Program Flow 3 .. 8

Diagram D – Data Storage Array ... 8

Diagram E – Conversion to a 4DGL 32-bit Integer 8

Diagram F – Print the 32-bit Integer .. 9

Print the Value to the Display 9

Print the Value to an Array 9

Diagram G – Display the Characters ... 11

Build and Upload the Project ... 12

Identify the Messages ... 12

Use the GTX Tool to Analyse the Messages 12

Launch the GTX Tool 12

Send a WRITE_MAGIC_BYTES Message 13

Click the Send Values Button for MagicObject0 13

Select “Bytes” 13

Input a 32-bit Hexadecimal Number 14

Proprietary Information .. 15

Disclaimer of Warranties & Limitation of Liability 15

APPLICATION NOTES 4D-AN-00157

Page 4 of 15 www.4dsystems.com.au

 Application Overview

The Diablo16 and Picaso are 16-bit processors, and signed number

operation with 16-bit integers limits the maximum number that can be

displayed by LED digits objects to "32,767". 2^16 equals 65,536. Divide this

by two since the first half is used to represent positive numbers; the

remaining half is used to represent negative numbers. Thus, attempting to

create a 6-digit or more LED digits object or to send to a LED digits object a

value beyond the limit results to red "X" marks shown on the object during

runtime. To be able to display a value higher than "32,767" in ViSi-Genie,

one solution is to use magic objects.

With the release of Workshop4 PRO, it is now possible for users to insert

4DGL codes (in the form of magic objects) into Genie projects. This feature

allows for more flexibility in the user's project compared to a project created

in the standard Genie environment. One of the objects under the Genie

Magic pane is the Magic Object. This is actually a 4DGL function which

allows users to handle bytes received from an external host. The user, for

example, can create a Magic Object that waits for 4 bytes (which can

represent 32-bit integers) and writes the decimal equivalent value to a LED

digits object.

 Setup Procedure

 For instructions on how to launch Workshop 4, how to open a ViSi-Genie

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note:

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

 Design the Project

Add Two LED Digits Objects to Form0

Two LED digits objects – Leddigits0 and Leddigits1 – are added to Form0.

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/

APPLICATION NOTES 4D-AN-00157

Page 5 of 15 www.4dsystems.com.au

To know more about LED digits objects, their properties, and how they are

added to a project, refer to the application note

ViSi-Genie Digital Displays

http://www.4dsystems.com.au/appnote/4D-AN-00012/

APPLICATION NOTES 4D-AN-00157

Page 6 of 15 www.4dsystems.com.au

Add Three Static Text Objects to Form0

These are Statictext0, Statictext1, and Statictext2.

To know more about static text objects, their properties, and how they are

added to a project, refer to the application note

ViSi-Genie Labels, Text, and Strings

Add a Magic Code Object to Form0

A Magic Code object is added to Form0. This is MagicCode0.

You may open MagicCode0 of the attached project and copy the 4DGL code

to your new project. To know more about the Magic Code objects, their

properties, how they are added to a project, and how their codes are

opened and edited, refer to the application note

ViSi-Genie How to Add Magic Objects

http://www.4dsystems.com.au/appnote/4D-AN-00013/
http://www.4dsystems.com.au/appnote/4D-AN-00182/

APPLICATION NOTES 4D-AN-00157

Page 7 of 15 www.4dsystems.com.au

Add Two Magic Object Objects to Form0

Two Magic Object objects – MagicObject0 and MagicObject1 – are added

to Form0. Take note that each has its own alias.

You may open MagicObject0 and MagicObject1 of the attached project and

copy the 4DGL codes to the appropriate objects in your new project. To

know more about the Magic Object objects, their properties, how they are

added to a project, and how their codes are opened and edited, refer to the

application note

ViSi-Genie How to Add Magic Objects

Diagrams

Attached is a PDF file (programFlow.pdf) containing several diagrams that

attempt to help the user understand how the application works. Knowledge

of 4DGL strings is the key to understanding the diagrams.

Diagram A – Program Flow 1

In Diagram A there are two classifications of processes – internal and

external. Internal processes are those that are performed inside Genie and

are hidden from the user. External processes are those that are defined by

the user through the use of the magic objects. Of course, all of the processes

are actually inside Genie when the entire project is compiled. The processes

are classified as such only to facilitate this discussion. Note that the function

“writeToLeddigits(…)” is a function defined in MagicCode0.

When the Genie program receives a message of the type

“WRITE_MAGIC_BYTES”, it checks the index of the Magic Object object for

which the message was intended and then calls on the appropriate Magic

Object object routine. Several processes are performed inside

MagicObject0 and MagicObject1, as will be shown later. Note that each

Magic Object object eventually calls the function “writeToLeddigits(…)”

before returning the control to the Genie program.

http://www.4dsystems.com.au/appnote/4D-AN-00182/

APPLICATION NOTES 4D-AN-00157

Page 8 of 15 www.4dsystems.com.au

Diagram B – Program Flow 2

Diagram B shows the key processes that are performed inside the Magic

Object objects MagicObject0 and MagicObject1 and the function

“writeToLeddigits(…)”. These key processes will be discussed in more detail

later.

Diagram C – Program Flow 3

Diagram C is another version of Diagram B – Program Flow 2. Diagram C

focuses on the sequence of the key processes that need to be performed. It

further shows how these processes are distributed to the objects of the

project.

Diagram D – Data Storage Array

We will now discuss how the application works. First we again take note that

when the Genie program receives a message of the type

“WRITE_MAGIC_BYTES”, it checks the index parameter then calls on the

appropriate Magic Object object. Genie internally stores the data contained

by the message into an array and provides us, the user, access to this array

thru the argument “var *ptr”, which is the address of the array. In the

generated 4DGL code for MagicObject0, the argument is indicated below.

In diagram D, observe how the bytes of the received data are arranged and

stored. The addresses shown are just an example.

Diagram E – Conversion to a 4DGL 32-bit Integer

In 4DGL, 32-bit integers are stored in a manner illustrated on the lower part

of Diagram E. When using 4DGL string class functions to print the value of a

32-bit integer, the processor expects that the bytes of the 32-bit integer are

properly arranged. Hence, we need to copy the bytes of the received data

(from ptr), properly rearrange, and store them to another array (bytes). To

do this we write,

The process is illustrated in Diagram E. For more information on 4DGL

strings, refer to the following application notes:

1. Designer or ViSi Strings and Character Arrays

2. Designer or ViSi 4DGL Strings Print Formats – the String and

Character Format Specifiers

3. Designer or ViSi 4DGL Strings Print Formats – the Long Decimal

Format Specifiers

http://www.4dsystems.com.au/appnote/4D-AN-00193/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00196/
http://www.4dsystems.com.au/appnote/4D-AN-00196/

APPLICATION NOTES 4D-AN-00157

Page 9 of 15 www.4dsystems.com.au

Diagram F – Print the 32-bit Integer

Print the Value to the Display

After ensuring that the 32-bit integer is stored in bytes, we can now print its

decimal equivalent. We can print the decimal equivalent value directly to

the screen, as shown below.

The code snippet above makes use of a byte-aligned pointer and the 4DGL

string class function “str_Printf(…)” to print the decimal equivalent of a 32-

bit integer stored in bytes. For more information on byte-aligned pointers

and the use of the str_Printf(…) function, refer to the following application

notes:

1. Designer or ViSi Strings and Character Arrays

2. Designer or ViSi 4DGL Strings Print Formats – the String and

Character Format Specifiers

3. Designer or ViSi 4DGL Strings Print Formats – the Long Decimal

Format Specifiers

Print the Value to an Array

It is also possible to print the decimal equivalent value of the 32-bit integer

to an array, such that the array contains the characters of the printed value.

The array is therefore essentially a string. This is done by streaming the

printed characters to an array.

The process of streaming the printed value to an array is performed by the

function “writeToLeddigits(…)”, which is defined inside the Magic Code

object MagicCode0. Before returning to main, MagicObject0 calls the

function writeToLeddigits(…) as shown below.

Note that we passed the address of bytes as the first argument, the index of

Leddigits0 as the second argument, and the constant UNSIGNED as the third

argument. This will let writeToLeddigits(…) know where to get the 32-bit

integer (bytes), what LED digits object to use (Leddigits0), and what format

to use (UNSIGNED).

http://www.4dsystems.com.au/appnote/4D-AN-00193/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00196/
http://www.4dsystems.com.au/appnote/4D-AN-00196/

APPLICATION NOTES 4D-AN-00157

Page 10 of 15 www.4dsystems.com.au

Inside the function writeToLeddigits(…), the array buffer is created. This will

contain the characters of the printed decimal equivalent. Note that buffer

here has a size sufficient enough to hold up to 30 characters including the

null terminator.

To the array buffer we now stream the decimal equivalent value of the 32-

bit integer stored in bytes.

Note that j is a byte-aligned pointer to address, the address of which in

memory is the same as that of byte. At this point, we now have a string

stored inside the array buffer, as illustrated in Diagram F.

For more information on the storage of 4DGL strings, byte-aligned pointers,

the use of the str_Printf(…) function, and the use of the long signed and long

unsigned decimal format specifiers, refer to the following application notes:

1. Designer or ViSi Strings and Character Arrays

2. Designer or ViSi 4DGL Strings Print Formats – the String and

Character Format Specifiers

3. Designer or ViSi 4DGL Strings Print Formats – the Long Decimal

Format Specifiers

http://www.4dsystems.com.au/appnote/4D-AN-00193/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00194/
http://www.4dsystems.com.au/appnote/4D-AN-00196/
http://www.4dsystems.com.au/appnote/4D-AN-00196/

APPLICATION NOTES 4D-AN-00157

Page 11 of 15 www.4dsystems.com.au

Diagram G – Display the Characters

The last step is now to get all the characters stored in buffer, find the

corresponding LED digit for each character, and display the digit at the

proper location. To properly display the digits, we have to know where to

start displaying (the property “left”), the number of digits allowed for a LED

digits object (the property “digit”), and the width of a single digit (the

property “width”). We extract these properties from a certain RAM location,

the starting address of which is specified by the variable “oLedDigitsn”. Note

that oLedDigitsn is internal to Genie.

The extraction of the characters from inside the string is done using the

4DGL string class function “str_GetByte(…)”.

The displaying of the frames of a LED digit image is done using the functions

“img_SetWord(…)” and “img_Show(…)”.

img_SetWord(…)” and “img_Show(…)” are examples of 4DGL image control

functions. To know more about them, refer to the following application

notes.

1. ViSi Displaying Images from the uSD Card - WYSIWYG FAT16

2. ViSi Images and User Images

Understanding how the remaining part of the writeToLeddigits(…) function

works is now left to the reader as an exercise.

http://www.4dsystems.com.au/appnote/4D-AN-00069/
http://www.4dsystems.com.au/appnote/4D-AN-00074/

APPLICATION NOTES 4D-AN-00157

Page 12 of 15 www.4dsystems.com.au

 Build and Upload the Project

 For instructions on how to build and upload a ViSi-Genie project to the

target display, please refer to the section “Build and Upload the Project” of

the application note

ViSi Genie Getting Started – First Project for Picaso Displays (for Picaso)

or

ViSi Genie Getting Started – First Project for Diablo16 Displays (for

Diablo16).

The uLCD-32PTU and/or the uLCD-35DT display modules are commonly

used as examples, but the procedure is the same for other displays.

 Identify the Messages

The display module is going to send messages to an external host. This

section explains to the user how to interpret these messages. An

understanding of this section is necessary for users who intend to interface

the display to a host. The ViSi Genie Reference Manual is recommended for

advanced users.

Use the GTX Tool to Analyse the Messages

Using the GTX or Genie Test eXecutor tool is one option to get the messages

sent by the display to the host. Here the PC will be the host. The GTX tool is

a part of the Workshop 4 IDE. It allows the user to receive, observe, and send

messages from and to the display module. It is an essential debugging tool.

Launch the GTX Tool

Under the Tools menu click on the GTX tool button.

http://www.4dsystems.com.au/appnote/4D-AN-00001/
http://www.4dsystems.com.au/appnote/4D-AN-00106/
http://www.4dsystems.com.au/product/4D_Workshop_4_IDE/downloads

APPLICATION NOTES 4D-AN-00157

Page 13 of 15 www.4dsystems.com.au

The Genie Test eXecutor window appears.

Send a WRITE_MAGIC_BYTES Message

Click the Send Values Button for MagicObject0

Select “Bytes”

APPLICATION NOTES 4D-AN-00157

Page 14 of 15 www.4dsystems.com.au

Input a 32-bit Hexadecimal Number

Click OK. To the right part of the window, the message sent is shown in green

font.

The format of the messages is shown below.

Command
Object
Index

Length Byte1 Byte 2 Byte 3 Byte 4
Check
sum

0x08 0x00 0x04 0x49 0x96 0x02 0xD2 0x03

Upon receiving the above message, the display module will now display the

equivalent decimal value using Leddigits0, like as shown below.

APPLICATION NOTES 4D-AN-00157

Page 15 of 15 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

