

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi Data Communication Over

Zigbee

DOCUMENT DATE: 13th April 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00075

Page 2 of 12 www.4dsystems.com.au

 Description

This application note is intended to demonstrating to the user the interconnection

of the 4D Systems Diablo16 display module with a ZIGBEE personal area network

module.

Before getting started, the following are required:

 The target module can also be a Diablo16 display

gen4-uLCD-24D
Series

gen4-uLCD-28D
Series

gen4-uLCD-32D
Series

gen4-uLCD-35D
Series

gen4-uLCD-43D
Series

gen4-uLCD-50D
Series

gen4-uLCD-70D
Series

uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display module

products that use the Diablo16 processor.

 4D Programming Cable / µUSB-PA5/µUSB-PA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,

for gen-4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00075

Page 3 of 12 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview ... 4

Setup Procedure ... 4

Create a New Project ... 4

Design the Project .. 4

Interconnections for the devices .. 5

The ViSi-based MASTER Application Project 6

The Include Section 6

The Main Program 6

The micro-SD Initialization 6

Displaying the Objects 7

The Repeat-forever Loop 7

The ViSi-based SLAVE Application Project 8

The Include Section 8

The Main Program 9

The micro-SD Initialization 9

Displaying the Objects 9

The Repeat-forever Loop 9

Running the Program ... 11

Proprietary Information ... 12

Disclaimer of Warranties & Limitation of Liability 12

APPLICATION NOTES 4D-AN-00075

Page 4 of 12 www.4dsystems.com.au

 Application Overview

This application note is intended to demonstrating to the user the interconnection

of the 4D Systems Diablo16 display module with a ZIGBEE personal area network

module.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project, and how

to change the target display, kindly refer to the section “Setup Procedure” of the

application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new ViSi project, please refer to the section

“Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Design the Project

Wireless network technology have paved the way to a better way of

interconnecting devices. It has enabled reporting of data from a remote device to

a central devices to other remote devices. Without the need of the physical

interconnection between devices, this has brought about numerous applications.

For this application project, a DRF1605H Zigbee was used. The module is based on

TI's CC2530F256 chip running Zigbee.

The Zigbee module in this application project is based on a serial mode of

communication. In particular, an asynchronous mode of serial communication is

used. The DRF1605H is a module that has its connection pre-defined by the

manufacturer. This means that connecting to it is simply straight forward.

The Diablo16 on the other hand is a very capable embedded graphics processor. It

drives a touch capable display panel and is capable of communicating over several

means of interconnectivity. For serial connection, the Diablo16 I/O pins can be

configured and setup to a total of six connections. These serial connections are able

to communicate over a wide range of pre-set baud rates but for this application

project a 38400 baud rate was used. The baud rate was referenced to the default

settings of the Zigbee module.

As mentioned from the previous statements, the interconnection between these

two devices utilizes an asynchronous serial mode of communication. The data lines

involved are the TRANSMIT and RECEIVE together with the positive and ground of

connections of the power supply.

A good reminder at this point is that the power supply used for the Zigbee module

is 3.3 volts. These conditions should be considered by the user in case other

electronic parts are to be added to the system described in this application project.

http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00075

Page 5 of 12 www.4dsystems.com.au

Interconnections for the devices

For the Diablo16, the serial port one is used as the communication port for the

Zigbee module. The later parts of this document will discuss the setup of the port

used. There are several things to consider in using the Zigbee module with the

display devices. For a perfectly working application the baud rate must first be

considered, for this case a 38400 baud rate was used. Setting the baud rate for the

Diablo16 would require functions and statements that are written in 4DGL

language and DIABLO16 Internal functions. On the other hand, the baud rate for

the Zigbee module must be configured using its own setup software. Secondly,

consider the mode on which the system will operate.

The system may be configured to operate as a coordinator or as a router. Setting

the mode of the Zigbee to a coordinator would result to the system being a master.

Likewise, setting this module to a router would make the system a slave. For this

application, the Diablo16 was setup to operate as a master and the slave device

was made with another display module. This was done to demonstrate the

flexibility of interconnectivity with the Zigbee modules of the 4D Systems displays.

Referring to the images, shown are the images of the

DRF-1605H Zigbee module and its header pin-out.

(CLICK ON THE IMAGE FOR MORE INFORMATION)

The interconnection between the Diablo16 and the DRF1605H

primarily involves the headers on J2 of the Zigbee module. Pins

J2-4= RX, J2-3=TX, J2-11=GND and J2-12=3.3 Volts supply. The table

below shows the pin match up for the MASTER display device and

the COORDINATOR Zigbee module.

DIABLO16 DRF-1605H

3.3 volt J2 – 12

COM0 TX J2 - 4

COM0 RX J2 – 5

Gnd J2 – 11

The connections for the slave is almost the same as the pin match up shown above

except for the pins of the display module used. Since the slave device used is a

uLCD-43PT, the pins to be used are shown below.

uLCD-43PT DRF-1605H

3.3 volts J2 – 12

COM0 TX J2 - 4

COM0 RX J2 – 5

Gnd J2 – 11

Having been able to discuss the electrical connections between the devices, the

next thing to consider is the data communication itself. Exchange of data in a Zigbee

personal area network may follow several arrangements such that there would be

several routers and a central coordinator. For this application project, the data

communication was set to a transparent mode. In the transparent communication

mode the data is simply interchanged between the master and a particular slave.

The exchange of data between the two does not necessarily affect the

communication of other routers to the coordinator.

APPLICATION NOTES 4D-AN-00075

Page 6 of 12 www.4dsystems.com.au

The ViSi-based MASTER Application Project

For this project, the master display module was made to interact with the data sent

by the slave. The master module is comprised of several forms which can be

accessed by the slave module through strings that are sent over the wireless PAN.

 After all the objects have been laid-out, let’s continue with the other half which

involves the coding of the project. This will be presented in a sectional manner so

as not to create confusion with the project. For an in-depth detail of the functions

used in this application note please refer to the DIABLO16 Internal Functions

Reference Manual.

The Include Section

This project starts with the identification of the platform being used as declared by

the #platform function. For the program to be able to function properly files are

included herein using the #inherit function.

Three other files are included automatically during creation of the new project,

namely: 4DGL_16bitColours.fnc, the VisualConst.inc, and ControlConst.inc. Notice

that the last include file is almost the same as the project filename. This file is

automatically generated as soon as project is saved.

The Main Program

The main program for this projects contains several sections: the initialization and

the mounting of the micro-SD card, the initial displaying of the image objects, and

a continuous repeat-forever loop. The main loop detects data from the serial

communications ports and processes the data received according to a set of if-

conditions.

The micro-SD Initialization

Let’s start with the initialization of the uSD card. The uSD card contains all the image

information about the objects used in the project. The object information and data

are saved under a *.DAT and a *.GCI filename extension which is copied to the uSD

during project compilation. Mounting of the disk in this application note was done

using the following set of program statements.

http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES 4D-AN-00075

Page 7 of 12 www.4dsystems.com.au

Before the initialization of the microSD card, a pair of statements shown below sets

the communication port zero to receive and transmit at a baud rate of 38400 with

an initialized buffer named ‘_data’.

When starting a new project in the ViSi environment these set of statements are

already included in the coding area. The last part of these set of statements uses a

function file_LoadImageControl() to call on the object data/information files on the

uSD drive. This initializes the data to be called in using the variable ‘hndl’. In

addition, the filenames for the dat and gci files are automatically changed to the

project filename as soon as the project is saved.

Added to the statements above are the screen orientation setup function and the

touch enable function. The screen orientation is set to portrait thereby providing a

480x800 pixel dimension. This setup is attained using the gfx_Set() function.

Having been able to load and initialize the uSD drive, the processor is now able to

access the information stored therein. As mentioned from the previous section, the

filenames with an extension of DAT and GCI has the image data and information.

Therefore, the next part of the main program is to display all the objects that were

placed on the Workshop IDE form viewer.

A special button from the Object Inspector can help reduce the time of coding of

this part. The ‘Paste Code” simply pastes object code.

Displaying the Objects

In this part of the program, the img_Show() function simply calls out the object

image and information found in the microSD drive. This set of statements call out

the images from their handlers and are displayed on screen. Observe the characters

with the green font colours. This denotes the available object frame numbers

available for the particular User Image object.

Note that there is a statement that added before the series of image show

statements. The ‘again’ is a label for a ‘jump to location’ inside the main program.

The use of this shall be shown in the succeeding section.

The Repeat-forever Loop

This section of the main program contains statements that are continually run by

the processor. For this project, the serial data is saved to the variable ‘n’. The serial

input serin() function is monitored using the if-condition statement. Whenever the

APPLICATION NOTES 4D-AN-00075

Page 8 of 12 www.4dsystems.com.au

result value on the variable n is not equal to -1, the data received is saved into the

n.

There is a series of if-else conditional statement shown above. These conditions

tests the values received and saved on the variable array rec_buffer. The values

received herein is a set of hexadecimal values that are the equivalent of a string

being sent from the slave module.

The if-else condition needs several conditions to call and execute a particular sub-

routine. Considering the first condition on the statements shown above, if the

received bytes are equivalent to the values starting from buffer index zero up to

three it will direct the processor to jump to the address given by the label ‘again’.

For the other if-else conditions, the content of the rec_buffer is compared to the

values and index position given in the program. If the values and index position are

all the same as the reference then the subroutine statements is called and

executed.

The ViSi-based SLAVE Application Project

The slave project includes a couple of winbutton that are setup to send out data

over the serial communications port when pressed.

After all the objects have been laid-out, let’s continue with the other half which

involves the coding of the project. This will be presented in a sectional manner so

as not to create confusion with the project.

The Include Section

This project starts with the identification of the platform being used as declared by

the #platform function. For the program to be able to function properly files are

included herein using the #inherit function. Three other files are included

automatically during creation of the new project, namely: 4DGL_16bitColours.fnc,

the VisualConst.inc, and slaveConst.inc. Notice that the last include file is almost

the same as the project filename. This file is automatically generated as soon as

project is saved.

APPLICATION NOTES 4D-AN-00075

Page 9 of 12 www.4dsystems.com.au

The Main Program

The main program for this projects contains several sections: the initialization and

the mounting of the micro-SD card, the initial displaying of the image objects, and

a continuous repeat-forever loop that is related to the touch status of the button

objects.

The micro-SD Initialization

Let’s start with the initialization of the uSD card. The uSD card contains all the image

information about the objects used in the project. The object information and data

are saved under a *.DAT and a *.GCI filename extension which is copied to the uSD

during project compilation. Mounting of the disk in this application note was done

using the following set of program statements.

Before the statements that detect and initialize the microSD, a statement using the

touch_Set() function enables the touch function. Another statement sets the

screen orientation and the last one configures the baud rate that will be used for

the com0 communications port.

Displaying the Objects

In this part of the program, the img_Show() function simply calls out the object

image and information found in the microSD drive. This set of statements call out

the images from their handlers and are displayed on screen. Observe the characters

with the green font colours. This denotes the available object frame numbers

available for the particular User Image object.

Setting of the touch feature for an image requires the function

Img_Clearattributes(). This function allows the touch detection on the images. The

result of the touch on the images is saved on a variable in the repeat-forever loop.

The Repeat-forever Loop

This section of the main program contains statements that are continually run by

the processor. For this project, the serial data is saved to the variable ‘n’. The serial

input serin() function is monitored using the if-condition statement. Whenever the

result value on the variable n is not equal to -1, the data received is saved into the

n.

APPLICATION NOTES 4D-AN-00075

Page 10 of 12 www.4dsystems.com.au

Following the detection of a touch action on the image, a set of if-conditions

process the status of the touch panel. The touch panel is checked for two

conditions – a press over an image or a touch released on an image.

If a touch pressed is detected, the next is to determine which image was touched.

After both conditions are satisfied, a couple of statements are executed. The first

statements that are executed are related to images simply changes the image index

state of the button object. The last statements includes a to() and print() function

pair, send out a string to the serial communications port. These strings are the data

being received by the master module and processed.

Another touch related condition is the ‘touch_released’ condition. After a touch is

detected on the screen, this conditional loop detects the release part of the

process. The sole purpose of this if conditional loop is to return the button’s image

index to zero. The transitions that occur during the touch and the release results

to a simple animation that shows images being pressed and released.

APPLICATION NOTES 4D-AN-00075

Page 11 of 12 www.4dsystems.com.au

Running the Program

For instructions on how to save a ViSi project, how to connect the target display to

the PC, how to select the program destination (this option is not available for

Goldelox displays), and how to compile and download a program, please refer to

the section “Run the Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as

examples, but the procedure is the same for other displays.

http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00075

Page 12 of 12 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

