
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

ViSi SOMO-II Demo

DOCUMENT DATE: 21st May 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00071

Page 2 of 12 www.4dsystems.com.au

 Description

This application note shows how to interface a 4D Systems intelligent display

to the embedded Sound Module SOMO-II. Before getting started, the

following are required:

 Any of the following 4D Picaso display modules:
gen4-uLCD-24PT
gen4-uLCD-28PT
gen4-uLCD-32PT
uLCD-24PTU
uLCD-28PTU
uVGA-III

and other superseded modules which support the ViSi Genie environment

 The target module can also be a Diablo16 display
gen4-uLCD-24D series
gen4-uLCD-28D series
gen4-uLCD-32D series
gen4-uLCD-35D series
gen4-uLCD-43D series
gen4-uLCD-50D series
gen4-uLCD-70D series
uLCD-35DT
uLCD-43D Series
uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

 4D Programming Cable or µUSB-PA5

 2 micro-SD (µSD) memory cards

 Workshop 4 IDE (installed according to the installation

document)

 SOMO-II module*

 Jumper wires for connecting the SOMO-II to the display

 Speaker

 or has a working knowledge of the topics presented in these

recommended application notes.

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read

or has a working knowledge of the topics presented in these

recommended application notes.

*Even without a SOMO-II module, it is still possible for the user to run the

demo in this application note by using the terminal utility in Workshop. See

the section “Simulate the SOMO-II Module using the Terminal”.

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/8/4D_Intelligent_Display_Modules/uLCD_28PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_35D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/uSD_2GB/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://www.4dsystems.com.au/products/

APPLICATION NOTES 4D-AN-00071

Page 3 of 12 www.4dsystems.com.au

 Content

Description ... 2

Content ... 3

Application Overview .. 3

Setup Procedure ... 3

Create a New Project ... 3

Design the Project ... 4

Writing the Code for a Form .. 4

Writing the Code for the Demo .. 5

The Include File ... 5

Program Flow .. 6

Initialization 6

modeCheck() 7

Touch routine 7

somoDoEvents() 7

Return to main 7

Functions for Communicating with the SOMO-II Module 8

Adding Serial Commands to the Include File 10

Run the Program ... 11

Proprietary Information .. 12

Disclaimer of Warranties & Limitation of Liability 12

 Application Overview

It is often difficult to design a graphical display without being able to see the

immediate results of the application code. 4D-ViSi is the perfect software

tool that allows users to see the instant results of their desired graphical

layout. Additionally, there is a selection of inbuilt dials, gauges, and meters

(called widgets) that can simply be dragged and dropped onto the simulated

display. From here each widget can have its properties edited, and at the

click of a button all relevant code is produced in the user program.

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

 Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

https://www.4dsystems.com.au/blog/4d-an-00119/
https://www.4dsystems.com.au/blog/4d-an-00119/

APPLICATION NOTES 4D-AN-00071

Page 4 of 12 www.4dsystems.com.au

 Design the Project

Writing the Code for a Form

The general instructions below can be followed when writing the 4DGL code

for a form that handles graphics and touch detection. The objective is to be

able to display objects and control their behaviour when touched.

 Enable touch detection for objects that are meant to respond to touch

 Disable touch detection for objects that are not meant to respond to touch

 Set initial frames of objects then show the objects.

 Start touch detection routine.

 Define behaviour of objects when pressed.

 Define behaviour of objects when touch is released.

 Define behaviour of objects when touch is moving.

 Create an exit button to get out of the loop.

 Loop back to start of touch detection routine.

 Disable touch detection for all objects in the form before returning to main.

start touch
detection
routine

Objects behave
as defined

when pressed.

Objects behave
as defined

when touch is
released.

Objects behave
as defined

when touch is
moving.

Program breaks out of
the loop if the exit
button is triggered by a
touch press, release, or
movement.

end of touch
routine, back to

start

Disable/enable touch detection of objects.

Set initial frame and show objects.

Disable touch detection of objects.

Exit form and return to main.

C

C

loop

APPLICATION NOTES 4D-AN-00071

Page 5 of 12 www.4dsystems.com.au

In Form1 of miniSOMOII_demo, behaviour of objects is defined only when

touch status is moving (TOUCH_MOVING). In Form2, behaviour of objects is

defined only when the touch status is released (TOUCH_RELEASED). For a

more “complete” program, the user has the option of defining the

behaviour of objects for all three touch statuses in a loop -

“TOUCH_PRESSED”, “TOUCH_RELEASED”, and “TOUCH_MOVING”.

Writing the Code for the Demo

Theoretically, the program for miniSOMOII_demo has two tasks – to handle

graphics and to manage communication with the SOMO-II module. The task

of handling graphics involves the process of displaying objects and defining

their behaviour during touch detection. This part is illustrated in the diagram

to the left. Beginners may refer to the enumerated application notes on

page 4. The task of communicating with the SOMO-II module requires the

addition of an include file at the start of the code. In this include file all the

high level commands for talking to and listening from the SOMO-II module

are defined. These high level commands or functions are called when a form

is running. The following paragraphs provide further discussions.

The Include File

The demo has an include file which contains the subroutines for

communicating with the display. Note that the file version may change

anytime due to changes and/or improvements.

To view the contents, put the cursor on the include file name text, then click

on the right mouse button. Choose the first option, “Open file at Cursor”.

The file opens in another tab.

APPLICATION NOTES 4D-AN-00071

Page 6 of 12 www.4dsystems.com.au

The include file can be edited and improved by adding in more commands.

The contents of the include file are further discussed in the section

“Functions for Communicating with the SOMO-II module”.

Program Flow

Form1 of miniSOMOII_demo follows the model shown below. Note that the

graphics handling and communications routines are integrated into this

model.

Initialization

Here constants are defined, and variables are declared and initialized. Some

of these variables are used as flags. Touch detection is enabled or disabled

initialization

modeCheck()

touch routine

somoDoEvents()

return to main

loop

APPLICATION NOTES 4D-AN-00071

Page 7 of 12 www.4dsystems.com.au

for objects depending on their purpose. The initial frames of objects are set

and the objects are shown.

modeCheck()

This subroutine queries the SOMO-II module which track is currently

playing. Since querying involves the sending and receiving of messages to

and from the SOMO-II module, this subroutine is executed not every time

the loop repeats but only when any of the five predefined conditions is true.

See lines 165 to 182 of the code.

modeCheck() also sets the initial state of the play/pause button and the

initial frame of the album cover user images object depending on the

current play mode and other flags. The status of the play/pause button and

the frame of the album cover user images object may change each time the

loop repeats.

Touch routine

Here the behaviour of objects when they are touched are defined.

Commands are also sent to the SOMO-II module depending on the object

touched. Note that there are three specific touch status values. The

programmer can use one or all of these when coding.

somoDoEvents()

This subroutine queues messages from the SOMO-II module. If a message is

or messages are present in the queue, one is taken out and evaluated. When

the message "finished playing a track” has been received, the flag

SOMO_finishedPlayingFlag will be set so that modeCheck() will know what

to do in the next iteration of the loop. This makes the music player “smart”,

since it knows when to change the status of the play/pause button back to

“press-to-play” if a track has finished playing. This is true for the single play

mode.

Return to main

If a certain condition has been met (the “exit” button has been pressed for

instance), the program breaks out of the loop, disables touch detection for

all relevant objects, sets the return value (if present), and returns to main.

It is important to disable touch detection of objects in a form before exiting

that form since many of the objects in Workshop respond to touch even

though they are not shown. To illustrate:

Form1 Form 2

Object A

Object B

Object C
Object D

APPLICATION NOTES 4D-AN-00071

Page 8 of 12 www.4dsystems.com.au

In the image shown, each of the forms has two objects that respond to

touch. In Workshop, objects are named as they are added to the project.

Suppose the program exits Form1 and executes Form2 without disabling

touch detection for objects A and B. Now that the program is in Form2, only

objects C and D are shown. Objects A and B still respond to touch however,

and this may bring about undesirable or unexpected results. If the lower

regions of objects C and D are touched, these objects will not respond. It is

actually object B that will respond since it is still active and it was added to

the project first before objects C and D. So if, for example, objects C and D

will each turn on and off an LED, the user may observe that the LEDs are not

responding when objects C and D are touched at the lower regions.

Functions for Communicating with the SOMO-II Module

The following is a table of functions defined in the include file

“SOMOIIver9.inc”.

Command initializeSomo(attempts)

Description Sends the reset command for attempts times. Display waits
for the correct reply.

Return Returns ‘0’ if failed, ‘1’ if successful.

Command somoBufferEvents()

Description Queues a maximum of 6 replies from the SOMO-II module.
Queued replies are stored in global arrays.

Return None

Command somoDequeue(*reply)

Description Takes the latest message from the queue and evaluates it.
The message is stored in an array with the address reply.

Return Returns ‘1’ if a message has been taken from the queue, ‘0’
if none

Command playSong()

Description Play the audio track selected (if selected) else the first track
copied on to the media

Return None

Command stopSong()

Description Stop the current playing audio Track. If PLAY command is
then sent, the audio track will start from the beginning.

Return none

Command pauseSong()

Description Pause the current playing audio Track. If PLAY command is
then sent, the audio track will resume from where it was
paused.

Return none

Command nextSong()

Description If no track is currently playing, issuing the NEXT command
will start playing the first track copied to the media. If the
SOMO-II is currently playing a song or has previously played
a song, this will play the next song in the order copied on to
the media.

Return none

APPLICATION NOTES 4D-AN-00071

Page 9 of 12 www.4dsystems.com.au

Command previousSong()

Description If no track is currently playing, issuing the PREVIOUS
command will start playing the last track copied to the
media. If the SOMO-II is currently playing a song or has
previously played a song, this will play the previous song in
the order copied on to the media.

Return none

Command volumeSet(volume)

Description Sets the volume level to volume. Maximum value is 30.

Return none

Command selectuSD()

Description This will set the SOMO-II to play from a micro-SD Card

Return none

Command queryCurrentTrackuSD(timeLimit)

Description Query the current track playing from the micro-SD Card.

Return Returns ‘1’ if a valid message has been received within
the time limit timeLimit (in milliseconds). Returns ‘0’
otherwise. To get the track number, access the fourth
element of a private variable, like as shown below.

Command queryTracksuSD(timeLimit)

Description Query the number of files present on the uSD card.

Return Returns ‘1’ if a valid message has been received
within the time limit timeLimit (in milliseconds).
Returns ‘0’ otherwise. To get the number of files
present on the media, access the fourth element of a
private variable, like as shown below.

Command specifyTrack(trackNumber)

Description Specify the number of a track then play it.

Return none

Command specifyEQ(eq)

Description Configure the eq setting. Values for eq: 0/1/2/3/4/5
Normal, Pop, Rock, Jazz, Classic, Bass. See Form4 of the full
demo.

Return none

Command sleepSOMO()

Description This will put the SOMO-II into a sleep state, which consumes
low power. To get the SOMO-II out of sleep, you need to
use a PLAY SOURCE command, followed by your next
chosen command.

Return none

APPLICATION NOTES 4D-AN-00071

Page 10 of 12 www.4dsystems.com.au

Command resetSOMO()

Description This will reset the SOMO-II module, to be in its powered-on
state.

Return none

Command singlePLAY()

Description This will disable CONTINUOUS, RANDOM TRACK or REPEAT
CURRENT modes if previously enabled, which is how the
module starts up by default. This will allow one song to play
and then stop. Start track with PLAY.

Return none

Command continuousPLAY()

Description This will enable continuous mode (disable RANDOM TRACK
and REPEAT CURRENT if previously enabled), which will play
all songs on the memory card, one after the other. Start
track with PLAY.

Return none

Command randomPLAY()

Description This will enable Random Mode (disable CONTINUOUS and
REPEAT CURRENT if previously enabled), which plays
random tracks one after the other, continuously. Start track
with PLAY.

Return none

Command repeatCurrent()

Description This will enable the repeat play mode (disable
CONTINUOUS and RANDOM TRACK if previously enabled),
which repeats the currently playing track, so it will play over
and over continuously. Track must be playing before this
command is sent.

Return none

Command setPlayMode(mode)

Description Set the play mode to mode: 0/1/2/3 – single
play/continuous play/random/repeat current

Return none

Adding Serial Commands to the Include File

The SOMO-II datasheet contains all of the predefined SOMO-II serial

commands and their corresponding function and meaning. To add more of

these to the include file, simple edit the file and save it.

 C

 C

http://www.4dsystems.com.au/product/SOMO_II/downloads

APPLICATION NOTES 4D-AN-00071

Page 11 of 12 www.4dsystems.com.au

As an example, the serial command for choosing the USB flash drive as the

play source is “7E 09 00 00 01 FF F6 EF”. From the datasheet:

This command can be implemented in 4DGL and added to the include file as

shown below.

 Run the Program

For instructions on how to save a ViSi project, how to connect the target display to

the PC, how to select the program destination (this option is not available for

Goldelox displays), and how to compile and download a program, please refer to

the section “Run the Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU and uLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

https://www.4dsystems.com.au/blog/4d-an-00119/

APPLICATION NOTES 4D-AN-00071

Page 12 of 12 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

