
ViSi Quadrature Input

A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

DOCUMENT DATE: 27th APRIL 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00063

 Page 2 of 12 www.4dsystems.com.au

 Description

This Application note is intended to demonstrating to the user the set-up,

initialization and operation of the built-in quadrature input feature of the Diablo16

display module.

 The target screen can be any of the following Diablo16 touch

display modules:

gen4-uLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-uLCD-38D series gen4-uLCD-43D series gen4-uLCD-50D series
gen4-uLCD-70D series
uLCD-35DT uLCD-43D Series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo16 processor.

 4D Programming Cable / µUSB-PA5/uUSBPA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / 4D-UPA / gen4-PA

for gen4 displays (gen4-uLCD-xxx)

 Workshop 4 IDE (installed according to the installation document)

 micro-SD (µSD) memory card

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

 Content

Description ... 2

Content .. 2

Application Overview .. 3

The Diablo16 Embedded Graphics Processor 3

Setup Procedure ... 3

Create a New Project .. 3

Design the Project ... 4

The ViSi - based application project .. 5

The include section ... 5

The main program ... 5

The micro-SD initialization ... 5

The initial image display and image touch setup segment 6

The GPIO setup sub-routine ... 7

The repeat-forever image touch detect loop 7

The clockwise() sub-routine ... 8

The counter() sub-routine .. 9

Running the project .. 9

Proprietary Information .. 12

Disclaimer of Warranties & Limitation of Liability 12

https://www.4dsystems.com.au/product/gen4_uLCD_24D/
https://www.4dsystems.com.au/product/gen4_uLCD_28D/
https://www.4dsystems.com.au/product/gen4_uLCD_32D/
https://www.4dsystems.com.au/product/gen4_uLCD_38D/
https://www.4dsystems.com.au/product/gen4_uLCD_43D/
https://www.4dsystems.com.au/product/gen4_uLCD_50D/
https://www.4dsystems.com.au/product/gen4_uLCD_70D/
https://www.4dsystems.com.au/product/uLCD_35DT/
https://www.4dsystems.com.au/product/uLCD_43D/
https://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
http://www.4dsystems.com.au/product/17/115/Accessories/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/gen4_PA/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/

APPLICATION NOTES 4D-AN-00063

 Page 3 of 12 www.4dsystems.com.au

 Application Overview

This document is focused on the fundamental usage of the quadrature input

feature of the Diablo16 Embedded Graphics Processor. A quadrature input or

encoder, also known as an incremental rotary encoder, can be used to measure the

speed and direction of a rotating shaft. Quadrature encoders can use different

types of sensors, optical and Hall Effect are both commonly used. Diablo16 OGM

and Diablo16 display module has a total of 2 quadrature input channels. These

quadrature inputs are supported in several GPIO terminals.

The Diablo16 Embedded Graphics Processor

Driving the display and peripherals is the Diablo16 embedded graphics processor,

a very capable and powerful chip which enables stand-alone functionality,

programmed using the 4D Systems Workshop 4 IDE Software. The Workshop IDE

enables graphic solutions to be constructed rapidly and with ease due to its design

being solely for 4D’s graphics processors.

The Diablo16 Processor offers considerable FLASH and RAM upgrades over the

PICASO processor, and also provides map-able functions such as I2C, SPI, Serial,

PWM, Pulse Out, and Quadrature Input, to various GPIO, and also provide up to 4

Analogue Input channels.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/product/1/133/4D_Intelligent_Display_Modules/DIABLO16-OGM/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00063

 Page 4 of 12 www.4dsystems.com.au

Design the Project

To create a simple program that will be able to activate and initialize the Diablo16

quadrature input, we will need to use some commands enlisted in the DIABLO

4DGL Internal Functions.

The Diablo16 embedded graphics processor has a total of two quadrature input

channels. These quadrature input channels are map-able to the 14 general purpose

input-output terminals. Referring to the chart below, we will see that these output

pins can be used alternately with other processor I/O function support.

 These general purpose I/O pins for the quadrature input does not follow any

arrangements. The pins may be used readily, after configuring the function setup,

according to the user’s needs. These I/O pins are located similar to the image.

The Diablo16 configurable I/O are a group of 3.3 volts TTL level terminals but these

are tolerant to a maximum of 5 volts. Anything greater than or less than the

specified operating voltage may prohibit proper communication or even damage

the embedded graphics processor.

The 2x15 male header pin

assignment of the Diablo16

70DT. The previous table on

pin function configuration

option are lumped together

with several other specific

purpose pins.

http://www.4dsystems.com.au/product/DIABLO16/
http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES 4D-AN-00063

 Page 5 of 12 www.4dsystems.com.au

The ViSi - based application project

For this application project a pair of 4D buttons and images are used. Add objects

by navigating to the Layout the objects similar to the one below.

After all the objects have been laid-out, let’s continue with the other half which

involves the coding of the project. This will be presented in a sectional manner so

as not to create confusion with the project.

For an in-depth detail of the functions used in this application note please refer to

the Diablo16 Internal Functions Reference Manual.

The include section

This project starts with the identification of the platform being used as declared by

the #platform function. For the program to be able to function properly files are

included herein using the #inherit function.

In this application note, quad_inConst.inc, contains all the information about the

objects that are used in the project. Meanwhile, the leddigitsdisplay.inc contains

the function for the proper operation of the led digits objects.

The main program

The main program for this projects contains several sections: the mounting of the

micro-SD card, the initial displaying and image touch setup for objects, the setup

for quadrature and input-output control, the repeat-forever loops which contains

the continuous registry reading and touch conditions. Also, the main program calls

out sub-routine functions that perform a particular functions.

The micro-SD initialization

Let’s start with the initialization of the uSD card. The uSD card contains all the image

information about the objects used in the project. The object information and data

are saved under a *.DAT and a *.GCI filename extension which is copied to the uSD

during project compilation. Mounting of the disk in this application note was done

using the following set of program statements.

http://www.4dsystems.com.au/product/DIABLO16/

APPLICATION NOTES 4D-AN-00063

 Page 6 of 12 www.4dsystems.com.au

When starting a new project in the ViSi environment these set of statements are

already included in the coding area. The last part of this set of statements uses a

function file_LoadImageControl() to call on the object data/information files on the

uSD drive. This initializes the data to be called in using the variable ‘hndl’. Likewise,

additional variable were also assigned as image control for some graphics

composer generated GCI and DAT files.

Having been able to load and initialize the uSD drive, the processor is now able to

access the information stored therein. As mentioned from the previous section, the

filenames with an extension of DAT and GCI has the image data and information.

Therefore, the next part of the main program is to

display all the objects that were placed on the

Workshop IDE form viewer. To do so, a special button

from the Object Inspector can help reduce the time of

coding of this part. The ‘Paste Code” simply pastes

object code into the coding area.

The initial image display and image touch setup segment

In this part of the program, the img_Show() function calls out the object image and

information found in the microSD drive. This set of statements displays every

object that were included in the application project. The displaying of the images

is directly done using the img_Show() function.

In this segment of the program statements. We have displayed all the static texts,

4D button widgets and an image file. The image file handled with the variable ‘stop’

is directed to be displayed at the 50th of x pixels and 230th of the y pixels. Moving

to the next part of the main program, this segment is all related to the image touch

detection setup.

This statements uses the img_ClearAttributes() function. The primary objective of

this set of statement is to enable the touch detection for the button images. The

button images on this project serves as an input objects which utilizes the touch

APPLICATION NOTES 4D-AN-00063

 Page 7 of 12 www.4dsystems.com.au

feature of the device. At the end, of this segment we would notice that the touch

feature of the device was enabled using the touch_Set(TOUCH_ENABLE)

statement.

The GPIO setup sub-routine

The purpose of this sub-routine is to simplify the presentation of the program

statements in this document. When using the GPIO pins for a special function, it is

always best that the direction of data is assigned.

Below is the sub-routine being called in by the gpio_setup() function. It can be

observed that the GPIO PA6 and PA7 are assigned to control the direction of the

encoder generator. These quadrature control signal generator is then temporarily

disabled through setting the PA6 and PA7 low.

The quadrature input channel was initialized using the Qencoder() function. The

pokeW() function at the end of this routine writes to registers related to the

quadrature encoder channel.

The repeat-forever image touch detect loop

At this end part of the main program, the routine was to detect any activity on the

touch screen. Three touch states were included in this repetitive routine: the

detection for a pressed state, a released state, and a moving state. Prior to the

touch detection, a variable ‘n’ is assigned to store temporary image touch detection

result. The img_Touched() function checks the object being touched and return the

name of the object enlisted in the variable ‘hndl’.

Moving to the touch detection routines, two touch states were utilized in this

document. The touch state are detected through the touch_Get() function. This

function returns the status into a variable ‘state’. If one of the conditions is met,

the processor immediately executes the statements included therein.

The repeat-forever loop includes a condition for a ‘touch released’ state. If the

released condition for touch is satisfied, the index ‘0’ of the image handler ‘stop’ is

displayed. Included in this segment is a pair of if-conditions that results to

displaying of the 4Dbuttons in their ‘1’ index. For the if-condition statements, two

subroutines are called – the clockwise() and counter(). These sub-routines will be

further explained in details in the next part of this document.

APPLICATION NOTES 4D-AN-00063

 Page 8 of 12 www.4dsystems.com.au

Let us take the above statements under the ‘touch released’ if-condition. From the

start of the repeat-forever loop, the img_Touched() function saves the result of an

image touch to a variable ‘n’. Subsequently, when the touch on the image is

released the image name is returned. This result is then checked on an if-

conditional loop. Whenever a condition is satisfied, the statements results to the

image buttons being displayed with their ‘0’ index.

The clockwise() sub-routine

Whenever the touch detection results to the 4Dbutton1 image being touched, the

processor is directed to run the statements contained in the clockwise() sub-

routine.

The first part of the sub-routine sets the PA6 and PA7 with a LOW and a HIGH logic,

respectively. This enable the ‘going positive’ turn for the quadrature signal

generator. The signal generator is continuously run while the 4Dbutton image is

not pressed.

While the touch related condition is not achieved, the processor runs the

statements inside the loop. Referring to the while-condition statements above, the

registers for the quadrature encoder channel 1 are repetitively read using the

peekW() function. Also, it is repetitively displayed using the print function. For the

purpose of demonstration, the index of the image handler variable ‘indicate1’ is

also changed every 50 milliseconds. This produces the visual graphics to represent

the direction of the turn.

After the while condition loop is satisfied, the next statements in the sub-routine

simply puts the signal generator to a stop.

APPLICATION NOTES 4D-AN-00063

 Page 9 of 12 www.4dsystems.com.au

The counter() sub-routine

This sub-routine is almost identical to that of the previous sub-routine. The only

difference between the two is the logic level for the GPIOs PA6 and PA7. This

difference produces the switching of signals between the quadrature signal

generators. This switching results to the reversal of the phase of the quadrature

input.

Running the project

Compile and download the program to the display module. Having been able to

complete this step, the next step that needs to be done is to provide the wire up

for the quadrature input generator and the Diablo16 70DT.

For the sole purpose of demonstration, a digital arbitrary waveform generator is

used to provide the logic transitions. Furthermore, the quadrature encoder input

used was produced using a set of D FLIP-FLOPS and XOR gates. The input represents

a set of feedback and control signals that are commonly present with servo motors.

In this document, the servo motor feedback is mimicked using the quadrature

generator and in addition, the rotation direction is controlled using two GPIO pins.

In addition, a pulse generator was used to vary the clock pulse of the flip-flops. This

pulse in turn represents the speed of the input. The pulse generator used in this

application is an Agilent Arbitrary Waveform Generator set to a frequency of 10 Hz.

Set with an output voltage of 0-5 volt dc peak voltage square wave output.

This application is fairly simple. A quadrature signal is fed to the DIABLO-70DT

quadrature input channel. The display module then displays the read-out from the

APPLICATION NOTES 4D-AN-00063

 Page 10 of 12 www.4dsystems.com.au

quadrature input registers. The registers that were displayed includes the encoder

counter HIGH and LOW registers alongside the encoder DELTA register.

The quadrature channel of the Diablo16 -70DT detects the change in phase

difference and identifies this a ‘going negative’ change or a “going positive” change.

There are no pre-assigned sign convention for the results of the registers. Below

are the view of the signals with an oscilloscope.

CLOCKWISE ROTATION QUADRATURE

SIGNAL

The upper waveform is leading the

lower waveform with 90 degrees.

COUNTER-CLOCKWISE QUADRATURE

SIGNAL

The lower waveform is leading the

upper waveform with 90 degrees.

The quadrature signal is multiplexed using two general purpose input-output pins,

namely: PA6 and PA7. These two pins enable or disable the signal generators.

While on the other hand, PA4 and PA5 served as the input for the quadrature

signals.

Pin number purpose

PA4 Input for the PHASE A waveform

PA5 Input for the PHASE B waveform

PA6 Select pin for PHASE A leading with 90 degrees.

PA7 Select pin for PHASE A lagging with 90 degrees.

Note: If you’re using a gen4-Display, please consult the gen4-PA/4D-UPA

Datasheet for the proper configuration of the GPIO pins.

The quadrature signal generator

D flip-flops are one of the simplest way to create a pair of signals with a 90 degree

phase difference. It can be arranged in a manner wherein a single clock pulse can

be used with two D flip-flops. Coupled to a few AND gates and OR gates, the phase

select can be made to switch between two choices, that is – PHASE A leads with 90

degrees or PHASE A lags with 90 degrees.

APPLICATION NOTES 4D-AN-00063

 Page 11 of 12 www.4dsystems.com.au

Below is the schematic for the D Flip-flop based Quadrature Signal Generator.

The phase A lagging and phase B leading are used to switch the output. The quad

in A and quad in B are to be connected with the PA4 and PA5, respectively.

APPLICATION NOTES 4D-AN-00063

 Page 12 of 12 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be copied or disclosed

without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The development

of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without limitation, warranties

for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your

responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages (including without

limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be provided by 4D Systems, or the use or

inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments requiring fail –

safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life support machines or weapons

systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental damage (‘High Risk Activities’). 4D Systems and

its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities. Use of 4D Systems’ products and devices in 'High Risk Activities' and in

any other application is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or

expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any 4D Systems intellectual property rights.

