
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

Designer or ViSi Loop Back Testing

with a PIC MCU

DOCUMENT DATE: 13th April 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00050

Page 2 of 11 www.4dsystems.com.au

 Description

This Application Note is intended to demonstrating and teaching the user

how to test the interface between the 4D PICASO display modules with the

MICROCHIP PIC microcontrollers. This application is intended for use in the

4D Workshop 4 – Designer environment. The tools needed includes the

following;

Before getting started, the following are required:

 Any of the following 4D Picaso display modules:

uLCD-24PTU uLCD-28PTU uVGA-III
gen4-uLCD-24PT gen4-uLCD-28PT gen4-uLCD-32PT

and other superseded modules which support the Designer

and/or ViSi environments.

 4D Programming Cable / µUSB-PA5/µUSB-PA5-II

for non-gen4 displays (uLCD-xxx)

 4D Programming Cable & gen4-IB / gen4-PA / 4D-UPA,

for gen-4 displays (gen4-uLCD-xxx)

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read or

has a working knowledge of the topics presented in these

recommended application notes.

 Content

Description.. 2

Content ... 2

Application Overview ... 3

Setup Procedure ... 3

Create a New Project .. 3

Design the Project .. 4

The PIC 18F45K20 Loopback program 6

Run the Program .. 9

PICASO Serial interface with the Microchip PIC18F45K20 Block

Diagram .. 10

Proprietary Information ... 11

Disclaimer of Warranties & Limitation of Liability 11

https://www.4dsystems.com.au/product/uLCD_24PTU/
https://www.4dsystems.com.au/product/uLCD_28PTU/
https://www.4dsystems.com.au/product/uVGA_III/
https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/product/uUSB_PA5/
https://www.4dsystems.com.au/product/4D_Programming_Cable/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
https://www.4dsystems.com.au/product/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00050

Page 3 of 11 www.4dsystems.com.au

 Application Overview

This document is about basic asynchronous serial interfacing of the 4D

display module with the PIC18F45K20. It contains a simple but helpful

information on how to test the data information being sent by the PICASO

serial port to a host controller in particular the MICROCHIP PIC18F34K20.

The system is arranged such that the information data is sent by the PICASO

display. This information is then received by the PIC18F45K20 and sends it

back for the screen to display.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to

the section “Create a New Project” of the application note

Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00050

Page 4 of 11 www.4dsystems.com.au

 Design the Project

To create a simple program that will be able activate and initialize the

PICASO serial ports, we will need to use some commands enlisted in the

PICASO 4DGL Internal Functions.

In particular, we will be using the Serial (UART) Communications Functions.

The PICASO serial communications is relatively easy to use. Since the PICASO

display module only uses the Transmit(TX), Receive(RX) and ground pins of

the standard serial communication port, it is relative easy to use. Before

going further it is good to remember that the PICASO display module has

two serial communications port which can be simultaneously used to

communicate with other serial capable controllers or devices.

There are several important settings of a serial communications that are

very important to have an effective and correct data communications. First

thing to consider is the BAUD RATE, the baud rate is simply the rate of

transfer from and to the device. If there exist a mismatch in the baud rate

of two serially coupled devices – the serial communication will be

erroneous.

Secondly, it is also good to consider the number of bytes that shall be

transferred at the instance of communication. This is important so that we

display device will be programmed to have a particular buffer which is

capable to save a series of bytes continuously. This size of the temporary

data storage, which is termed as a buffer, will determine the size of the data

that can be stored.

Below is a program that will initialize and set-up the serial communication

port of the 4D display module.

From the program above it is clearly seen that during the start of the

program main(), the serial communications port 0 is being setup to

communicate with the PIC host controller. It is set to transmit and receive

at a baud rate of 9600.

APPLICATION NOTES 4D-AN-00050

Page 5 of 11 www.4dsystems.com.au

In this program, see the statement com_SetBaud(COM0, 960). Notice that

with this function the serial communication port 0 is set with a baud rate of

9600. In this 4DGL function the actual desired baud rate is written but with

the real baud /10.

Moving to the next part of the program, notice how simple the initialization

of the serial com port is done. The initialization statement com_Init()

includes a variable array buf, buffer size and a qualifier. The qualifier is the

part of the initialization that if specified, the PICASO serial communication

will not start unless the qualifier is received. If the qualifier is set to ‘0’, this

implies that no start bit qualifier is specified.

Next, we have the while loop. The while generates the data that is to be sent

to the serial lines.

The variable n is incremented starting from zero until it reaches the limit of

0xFF hex limit. Each time the value of n is incremented starting from zero,

this are sent to the serial communication port zero TX. The sending of data

is done with the serout(n) function in line number 13.

After sending this value of n, it is also displayed in the screen to show what

value is currently being sent over the serial TX. Following the sending routine

is the receiving of data bytes coming from the host controller. With the aid

of the serin() function we are able to get the buffered RX data. This is being

read and displayed into the screen.

An if-else routine is used to determine if there are real data being received.

If the PICASO display module serial RX is left hanging, it results to a -1 value

which means that there are no data at the moment. If the serin() results to

a value of -1 – the program displays a message indicating that there are no

data in the serial RX line.

On the other hand if a data is receive then this data is printed in the display

with a message “Data Received” preceding it.

APPLICATION NOTES 4D-AN-00050

Page 6 of 11 www.4dsystems.com.au

After compiling and download of the program, the PICASO display module

will show the following output. If the MICROCHIP host controller is not

connected during test:

 This means that the PIC18F is not connected and that the serial

connections are left hanging or disconnected. On the other hand, if we

connect the PIC18F to the display module, we will have a result in the display

similar to the one below.

During the process of communication the delay caused by the pause(500)

results to a lag in the retransmitted value. This is also caused by the

operation manner of running a program in microcontrollers wherein the

statements of a program is run one step at a time. Although there is a lag in

data it does not mean that it is incorrect. The series of data are being

buffered by the display module and are being displayed on the screen. On

the other hand the PIC18F controller continuously receive and re-transmits

all data being received from the display module.

The PIC 18F45K20 Loopback program

The 18F45k20 host controller loopback program starts with the declaration

of its configuration files. The following configurations were used:

APPLICATION NOTES 4D-AN-00050

Page 7 of 11 www.4dsystems.com.au

The main body of the PIC18F45K20 loopback program is relatively easy to

understand since it only uses the custom-defined function sendbyte() to

transmit a single byte data and the receive() function which continuously

receives the input data to the PIC18F45k20. The port D of the demo board

was used to display the received value and as an indicator of data reception.

A header file is written to initialize the host controller’s serial

communication port. This initialization configuration is included in the

UART.h header file. This header has the definition for the functions sendbyte

() and receive ().

Referring to the UART.h contents on the opposite column. We could see a

function uart(). This function can be called in the main program to configure

the serial communication port.

// PIC18F45k20 configuration

#pragma config FOSC = INTIO67, FCMEN = OFF, IESO = OFF // CONFIG1H

#pragma config PWRT = OFF, BOREN = OFF, BORV = 30 // CONFIG2L

#pragma config WDTEN = OFF, WDTPS = 32768 // CONFIG2H

#pragma config MCLRE = ON, LPT1OSC = OFF, PBADEN = ON, CCP2MX = PORTC //

CONFIG3H

#pragma config STVREN = ON, LVP = OFF, XINST = OFF // CONFIG4L

#pragma config CP0 = OFF, CP1 = OFF, CP2 = OFF, CP3 = OFF // CONFIG5L

#pragma config CPB = OFF, CPD = OFF // CONFIG5H

#pragma config WRT0 = OFF, WRT1 = OFF, WRT2 = OFF, WRT3 = OFF // CONFIG6L

#pragma config WRTB = OFF, WRTC = OFF, WRTD = OFF // CONFIG6H

#pragma config EBTR0 = OFF, EBTR1 = OFF, EBTR2 = OFF, EBTR3 = OFF // CONFIG7L

#pragma config EBTRB = OFF

/** I N C L U D E S **/

#include <p18f45k20.h>

#include <delays.h>

#include “UART.h”

/** V A R I A B L E S ***/

void main (void)

{

 uart();

 TRISD = 0x00;

while(1)

{

 sendbyte(receive());

 PORTD = receive();

}

}

APPLICATION NOTES 4D-AN-00050

Page 8 of 11 www.4dsystems.com.au

The routines to receive the data from the display is already included in the

header file. This receive routine readily accepts data from the display

module and return this as a value ‘data‘. Furthermore, the sendbyte()

function is able to send a single byte at every function call.

// UART.h

void uart(void)

{ TRISCbits.TRISC7=1; //Make UART RX pin input

 TRISCbits.TRISC6=0; //Make UART TX pin output

 SPBRGH = 0 ; //9600bps 16MHz Osc

 SPBRG = 25;

 RCSTAbits.CREN=1; //Enables receiver

RCSTAbits.SPEN=1; //Serial port enable

BAUDCONbits.BRG16=1; // enable 16-bit Baud Rate Generator

BAUDCONbits.CKTXP = 1;

 TXSTAbits.SYNC=0; //0 = Asynchronous mode

 TXSTAbits.BRGH=1; //1 = High speed

 TXSTAbits.SENDB = 0;

 BAUDCONbits.DTRXP =1;

 PIE1bits.TXIE = 1;

}

unsigned char receive(void)

{ unsigned char data;

 if(RCSTAbits.FERR==1 && RCSTAbits.OERR==1)

 { while(PIR1bits.RCIF == 1)

 { RCSTAbits.CREN =0; //Overrun error (can be cleared by clearing bit CREN)

 data = RCREG;

 RCSTAbits.CREN =1;

 }

 }

 else

 { while(PIR1bits.RCIF == 1)

 { RCSTAbits.CREN =0; //Overrun error (can be cleared by clearing bit CREN)

 data = RCREG;

 RCSTAbits.CREN =1;

 }

 } return data; }

void sendbyte(unsigned char data)

{

 TXREG = data;

 TXSTAbits.TXEN=0;

 while(TXSTAbits.TRMT == 0)

 {

 TXSTAbits.TXEN=1; // enable transmission

 while(TXSTAbits.TRMT == 0) // wait here till transmit complete

 { NOP(); }

 }

 TXSTAbits.TXEN=0;

}

APPLICATION NOTES 4D-AN-00050

Page 9 of 11 www.4dsystems.com.au

Run the Program

For instructions on how to save a Designer project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target

display to the PC, how to select the program destination (this option is not

available for Goldelox displays), and how to compile and download a

program, please refer to the section “Run the Program” of the application

note

ViSi Getting Started - First Project for Picaso and Diablo16

The uLCD-32PTU display module is commonly used as the example, but the

procedure is the same for other displays.

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00050

Page 10 of 11 www.4dsystems.com.au

PICASO Serial interface with the Microchip PIC18F45K20 Block Diagram

The flow of data in this setup begins with the PICASO display. The PICASO display generates a counting number that begins at zero and passes this to the PIC
microcontroller. As the controller receives this stream of data is also sends it back to the display thereby creating a LOOPBACK of data. It will be noticeable
during the test that there a significant delay in the data streaming since both of the controllers operate in its own time-base set by the oscillator. Although the
microcontrollers have different sets of oscillator frequency they can be set to a particular baud rate that enable them to have correct data transmitted and
received.

APPLICATION NOTES 4D-AN-00050

Page 11 of 11 www.4dsystems.com.au

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

