
A
P

P
L

IC
A

T
IO

N
 N

O
T

E
S

Designer or ViSi Word Addressing

Architecture

DOCUMENT DATE: 12th APRIL 2019

DOCUMENT REVISION: 1.1

W W W . 4 D S Y S T E M S . C O M . A U

APPLICATION NOTES 4D-AN-00047

Page 2 of 8 www.4dsystems.com.au

 Description

This Application Note is dedicated to providing the reader a simple and

straight forward documentation about String Functions. This application is

intended for use in the 4D Workshop 4 – DESIGNER environment. The tools

needed includes the following:

 Any of the following 4D Goldelox display modules:

uOLED-96-G2

uOLED-128-G2

uOLED-160-G2

uLCD-144-G2

uTOLED-20-G2

or any superseded module that supports the ViSi

environment

 4D Programming Cable / uUSB-PA5/uUSB-PA5-II

 micro-SD (µSD) memory card

 Workshop 4 IDE (installed according to the installation

document)

 When downloading an application note, a list of recommended

application notes is shown. It is assumed that the user has read

or has a working knowledge of the topics presented in these

recommended application notes.

 This application note requires that the reader has a basic

knowledge of any programming language such as C.

 Content

Description.. 2

Content ... 2

Application Overview ... 3

Setup Procedure ... 3

Create a New Project .. 3

Design the Project .. 4

Storing string data into a variable array 4

How to save a string into a variable array? 4

How are the string data grouped in a buffer index? 4

A simple program to illustrate saving of a string 5

How the string data are arranged inside the buffer? 6

Summary... 7

Run the Program .. 7

Proprietary Information ... 8

Disclaimer of Warranties & Limitation of Liability .. 8

http://www.4dsystems.com.au/product/1/1/4D_Intelligent_Display_Modules/uOLED_96_G2/
http://www.4dsystems.com.au/product/1/2/4D_Intelligent_Display_Modules/uOLED_128_G2/
http://www.4dsystems.com.au/product/1/3/4D_Intelligent_Display_Modules/uOLED_160_G2/
http://www.4dsystems.com.au/product/1/4/4D_Intelligent_Display_Modules/uLCD_144_G2/
http://www.4dsystems.com.au/product/1/5/4D_Intelligent_Display_Modules/uTOLED_20_G2/
http://www.4dsystems.com.au/product/1/5/4D_Intelligent_Display_Modules/uTOLED_20_G2/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/

APPLICATION NOTES 4D-AN-00047

Page 3 of 8 www.4dsystems.com.au

 Application Overview

This Application Note is solely intended to discussing the Word Addressing

based Underlying Architecture. It includes a detailed explanation and

example of the ways to saving strings into a variable. It also encompasses

examples that will help the reader understand the way or manner by which

string data are saved.

The underlying architecture of the GOLDELOX processor is a 2-byte word,

this extends to the addresses used to access memory. This means that for

strings, normal addresses and pointers cannot be used. Strings need to be

addressed in 8 bit increments. The GOLDELOX processor is capable of string

handling through user defined functions. These functions can be

programmed to perform a certain purpose, for example, find and match

characters from a string or to perform concatenation of strings.

Before continuing with this application note, it is very important that the

user already knows how to use the Workshop IDE - Designer environment

and that the user is able to understand and use the basic text and string

functions of the GOLDELOX 4DGL instructions.

 Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer

project, and how to change the target display, kindly refer to the section

“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,

and how to change the target display, kindly refer to the section “Setup

Procedure” of the application note

ViSi Getting Started - First Project for Goldelox

 Create a New Project

For instructions on how to create a new Designer project, please refer to

the section “Create a New Project” of the application note

Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the

section “Create a New Project” of the application note

ViSi Getting Started - First Project for Goldelox

http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00118/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00118/

APPLICATION NOTES 4D-AN-00047

Page 4 of 8 www.4dsystems.com.au

 Design the Project

Storing string data into a variable array

This section includes a several subtopic that discusses significant process

and information that is related to storing of string data and how the data

address are determined.

How to save a string into a variable array?

Saving a string into a variable array is relatively easy. We save string data

into a variable by writing the string itself to a declared variable array.

The to(outstream) commands directs the processor to a media or to a

variable array alongside with the putstr(…) and print(…) will result to a

statement that is capable of attaining this save string process. For a better

visualization of this process let us use the following example.

We are going to save the string ‘HELLO WORLD’ into a variable array named

buffer. Putting this into a program would look like this:

In the above program a variable buffer with an array size of 10 is being

declared. The size declaration of the variable array means that there are 10

indexes. In turn each of the index contains a pair of bytes. It may simply be

stated that, for this example, each of the array index shall contain 2

characters. Therefore, the total bytes that can be held in an array of this size

would be 20.

 Character/byte capacity = array size X 2

How are the string data grouped in a buffer index?

Next at hand is to understand how these characters are lumped/grouped in

pairs. Putting this into a pairing figure it shall look like this :

index 0 1 2 3 4 5

character H / E L / L O / space W / O R / L D / none

APPLICATION NOTES 4D-AN-00047

Page 5 of 8 www.4dsystems.com.au

The figure above only shows the pairing of the characters in the string.

Notice that the space is included with the set of the characters.

If for example, we change the string to ‘GOOD DAY’, then the indexes of the

array will have this pairing of character.

index 0 1 2 4

character G / O O / D Space / D A / Y

Aside from the grouping of the characters, one very important part to
understand is the way these are saved into the array. Let us take the ‘GOOD
DAY’ example to picture the result when saving a string data to an array.
The equivalent values of the characters

index 0 1 2 3 4 5

character H / E L / L O / space W / O R / L D / none

HEX 48/45 4C/4C 4F/20 57/4F 52/4C 44/none

A simple program to illustrate saving of a string

For us to have a better look on the way the characters are saved in the

variable array buffer, let’s take this example program that will save “HELLO

WORLD” into the variable array buffer. After saving the string we will print

the content of the variable array while indicating the index number and the

content.

Before looking into the result of the above program, let us first look into the

details. The program started out with the declaration of the variable array

buffer with a sized of 10 pairs of bytes.

We have also declared a variable n that will serve as the representation of

our index positions. After the declaration of the variable buffer and its size,

the ‘HELLO WORLD’ string is being stored to the array buffer.

In the statement written in line 9, the variable to(…) function pointed to the

variable buffer as the address where the string data ‘HELLO WORLD’ will be

written. This also means that the hexadecimal values of the string data is

being placed into the indices of buffer in pairs.

APPLICATION NOTES 4D-AN-00047

Page 6 of 8 www.4dsystems.com.au

The next part is the while(…)/wend loop. The while loop simplifies the need

for repetitive statements that will print the content of the buffer index n.

This statement implies that the printing of the content of the buffer is

according to the index - n. The starting index count is zero and continuously

incremented with the n++ statement. Every time that the index count n is

incremented the value of the buffer[n] is displayed on a newline. The

newline is given by the \n command. This while-loop will continue until the

value of n will be equal to 10.

After compiling this program and downloading it to the GOLDELOX display

module, the result will be a set of 2 bytes which will be displayed one index

at a time.

How the string data are arranged inside the buffer?

We have observed from the preceding section that the hex values of the

characters are not arranged the same way they are written in the string. We

know that an index of a buffer can hold two bytes – one of which may be

pertained to as a higher byte and a lower byte.

When the processor is saving the string data, it first fills-out the higher bit

before the lower bit. After filling the first index, this index is then

incremented and the process is repeated again until all of the string data is

saved. Illustratively this can be represented as:

To further explain the process, consider the first two letters of the string -

H and E. When the string was saved in to the buffer array, the letter H fills

the higher byte of the index.

 When it is the turn of the letter E to be saved, the first letter H is moved to

the lower byte position thus giving space for E to be placed in to the higher

byte position.

Variable Array Buffer (H= higher byte; L= lower byte)

 Index 0 Index 1 Index 2 Index 3 Index 4 Index 5

 H L H L H L H L H L H L

Hex 45 48 4C 4C 20 4F 4F 57 4C 52 44 00

Character E H L L space O O W L R D END

APPLICATION NOTES 4D-AN-00047

Page 7 of 8 www.4dsystems.com.au

Referring to the transition table of the process:

This process is repeated until all the characters in the array are saved or until
the declared array variable has space to save the characters. After all the
characters have been saved, the string data is terminated with a value equal
to 0.

Summary

The GOLDELOX architecture requires that the string data stored on a buffer

must be addressed in 8 bit increments. The normal addressing and pointers

must follow the required increments to be able to access correct data.

Knowing this underlying architecture will help the user in the creation of

user-defined string handling functions.

 Run the Program

For instructions on how to save a Designer project, how to connect the

target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

Program” of the application note

Designer Getting Started - First Project

For instructions on how to save a ViSi project, how to connect the target

display to the PC, how to select the program destination (this option is not

available for Goldelox displays), and how to compile and download a

program, please refer to the section “Run the Program” of the application

note

ViSi Getting Started - First Project for Goldelox

The uLCD-32PTU, uLCD-35DT, uOLED-96-G2, and/or uOLED-160-G2 display

modules are commonly used as examples, but the procedure is the same for

other displays.

Buffer Index 0 Comment
 Higher byte Lower byte

00 00 Initial values of index 0

48 00 H is buffered beginning from higher byte

45 48 H is then moved to the lower byte and E
is placed on the higher byte

H = 48

E = 45

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00118/

APPLICATION NOTES 4D-AN-00047

Page 8 of 8 www.4dsystems.com.au

 Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The

development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position

with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

 Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without

limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages

(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be

provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments

requiring fail – safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life

support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental

damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,

indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or

otherwise, under any 4D Systems intellectual property rights.

