@4 D SYSTEMS

Designer or ViSi 4DGL Strings Print Formats
— the String and Character Format Specifiers

DOCUMENT DATE: 30" APRIL 2019
DOCUMENT REVISION: 11

>
o
o
-
O
>
-
O
P
Z
O
—)
m
7

WWW.4DSYSTEMS.COM.AU

APPLICATION NOTES

4D-AN-00194

This application note requires:
e Any of the following 4D Picaso and gen4 Picaso display modules:

gen4-uLCD-24PT
uLCD-24PTU

gen4-uLCD-28PT
uLCD-32PTU

gen4-uLCD-32PT
uVGA-III

and other superseded modules which support the ViSi Genie
environment

e The target module can also be a Diablo16 display

gen4-ulLCD-24D series gen4-uLCD-28D series gen4-uLCD-32D series
gen4-ulLCD-35D series gen4-uLCD-43D series gen4-uLCD-50D series
gen4-ulLCD-70D series
uLCD-35DT

uLCD-43D series uLCD-70DT

Visit www.4dsystems.com.au/products to see the latest display

module products that use the Diablo1l6 processor. The display
module used in this application note is the uLCD-32PTU, which is a
Picaso display. This application note is applicable to Diablo16 display
modules as well.

e 4D Programming Cable / uUSB-PA5/uUSB-PA5-II
for non-gen4 displays(uLCD-xxx)

e 4D Programming Cable & gen4-PA, / gen4-1B / 4D-UPA
for gen4 displays (gen4-uLCD-xxx)

e micro-SD (uSD) memory card

e Workshop 4 IDE (installed according to the installation document)

o Any Arduino board with a UART serial port

e 4D Arduino Adaptor Shield (optional) or connecting wires

e Arduino IDE

e When downloading an application note, a list of recommended
application notes is shown. It is assumed that the user has read or
has a working knowledge of the topics presented in these
recommended application notes.

Description

Content

Application Overview

Setup Procedure

Create a New Project

Design the Project
The Function str_Printf(...)
The Format Specifier “%s”
Automatic Advancing of the Pointer
The Format Specifier “%c”
Dynamic Construction of the Format Specifier

Run the Program

Proprietary Information

W O W N & 11 & W W W W W N N

Disclaimer of Warranties & Limitation of Liability

Page 2 of 9

www.4dsystems.com.au

https://www.4dsystems.com.au/product/gen4_uLCD_24PT/
https://www.4dsystems.com.au/product/gen4_uLCD_28PT/
https://www.4dsystems.com.au/product/gen4_uLCD_32PT/
http://www.4dsystems.com.au/product/1/7/4D_Intelligent_Display_Modules/uLCD_24PTU/
http://www.4dsystems.com.au/product/1/9/4D_Intelligent_Display_Modules/uLCD_32PTU/
http://www.4dsystems.com.au/product/1/124/4D_Intelligent_Display_Modules/uVGA_III/
https://www.4dsystems.com.au/product/gen4-uLCD-24D/
https://www.4dsystems.com.au/product/gen4-uLCD-28D/
https://www.4dsystems.com.au/product/gen4-uLCD-32D/
https://www.4dsystems.com.au/product/gen4-uLCD-35D/
https://www.4dsystems.com.au/product/gen4-uLCD-43D/
https://www.4dsystems.com.au/product/gen4-uLCD-50D/
https://www.4dsystems.com.au/product/gen4-uLCD-70D/
http://www.4dsystems.com.au/product/uLCD_35DT/
http://www.4dsystems.com.au/product/uLCD_43D/
http://www.4dsystems.com.au/product/uLCD_70DT/
http://www.4dsystems.com.au/products
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/uUSB-PA5/
http://www.4dsystems.com.au/product/17/114/Accessories/4D-Programming-Cable/
https://www.4dsystems.com.au/product/gen4_PA/
https://www.4dsystems.com.au/productpages/gen4-IB/downloads/gen4-IB_datasheet_R_1_2.pdf
https://www.4dsystems.com.au/product/4D_UPA/
https://www.4dsystems.com.au/product/uSD_4GB_Industrial/
http://www.4dsystems.com.au/product/10/120/Development/4D_Workshop_4_IDE/
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Main/Software

APPLICATION NOTES

4D-AN-00194

Application Overview

The application note Designer or ViSi Strings and Character Arrays explains
how 4DGL strings and character arrays are stored in and accessed from
memory. In that application note, the reader was also introduced to the

concept of byte-aligned pointers and the use of the function str_Printf{(...).

This application note now further explains the use of the str_Printf{...)
function together with the “%s” and “%c” format specifiers.

Setup Procedure

For instructions on how to launch Workshop 4, how to open a Designer
project, and how to change the target display, kindly refer to the section
“Setup Procedure” of the application note

Designer Getting Started - First Project

For instructions on how to launch Workshop 4, how to open a ViSi project,
and how to change the target display, kindly refer to the section “Setup
Procedure” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

Create a New Project

For instructions on how to create a new Designer project, please refer to
the section “Create a New Project” of the application note
Designer Getting Started - First Project

For instructions on how to create a new ViSi project, please refer to the
section “Create a New Project” of the application note
ViSi Getting Started - First Project for Picaso and Diablo16

Design the Project

The Function str_Printf(...)

To review the use of the function str_Printf(...), we start by declaring the
word array buffer, which has a size of ten and the word variable ptr.

var buffer|

var ptr;

We now stream to buffer the literal string constant “1234”.

) ; print ("1234");

Page 3 of 9

www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00193/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/
http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES

4D-AN-00194

We then make the word variable ptr a byte-aligned pointer to the string
inside buffer.

5 =
Ir

The output of the above code should be:

buffer: 1234

The Format Specifier “%s”

The str_Printf(...) function requires the address of the byte-aligned pointer
and a format specifier as the arguments. The most commonly used format
specifier is “%s”. It causes the str_Printf(...) function to print the data
pointed to by the byte-aligned pointer as a string of characters. Note that
the word array buffer in this case would contain the data shown below.

element buffer[0] buffer[2] buffer[3]
byte high | low | high | low | high | low | high | low
2 4 3|

Char NULL NULL | NULL NULL
Hex 32 31|38 33| 0 0o | o 0
element buffer[4] buffer[6] buffer[7]
byte high |\ low | high | low | high | low | high @ low
Char NULL NULL | NULL NULL | NULL NULL | NULL NULL
Hex 0 0o | o o | o 0 | o 0

element buffer[8]

byte high | low | high | low
Char | NULL NULL | NULL NULL
Hex | © 0o | o 0

The hexadecimal values are the equivalent ASCIl values of the characters.
For the line

str Printf (&ptr, "%s");

to work, the word array (buffer in this example) pointed to by the byte-
aligned pointer (ptr in this example) must contain a null-terminated
sequence of ASCII characters.

Page 4 of 9 www.4dsystems.com.au

APPLICATION NOTES

Automatic Advancing of the Pointer

Now consider the code snippet shown below

to(buffer); print("1234"
ptr

_Ptr (buffer)

) r
print ("ptr old:

Irptrr m

print ("buf
str

\an") s
E'J’_' .) F

Printf (aptr,

The output of this would be

buffer: 1234
ptr new: 21

string.

The initial value of ptris 16. This is the address of the first character in the

After the string is printed the value of ptris now 21.

4D-AN-00194
A change in the value of the pointer occurs because the function
str_Printf(...) automatically advances the byte-aligned pointer as it prints

the characters. In this case, since the string has four characters, the pointer

is now at address 21 after the four characters are printed. So if we would
insert another str_Printf(...) command as shown below
to (buffer) ;

rint ("1234"

_Ptr ({buffer)
print ("ptr old: ",ptr,"\n");
print ("buffer: ");
:tL_'L_anli} Exr,

print ("\n");
print ("ptr new

Irptrr"

\n") ;

i r

print ("buffer
"TL Fri

intf (aptr,
The output would be

buffer: 1234
ptr new: Z1
buffer:

Page 5 of 9

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00194

Note that nothing is printed since there are no character bytes starting at
address 21 or the low byte of buffer[2]. To print the string again therefore,
we must first reset the pointer to the beginning address of the string, like as
shown below.

to(buffer); print|

ptr := str Ptr(buffer);

—~ T

print ("ptr old: ",ptr,"\n");

print ("buffer: ");
:tL_Jr;anli} tr, "%s

"y oL
lr

print ("\n");

—~ T

int ("ptr new: ",ptr,"\n");

The Designer project for the discussion on the “%s” format specifier is

“stringsBasics3.4dg” (attached).

The Format Specifier “%c”

The format specifier “%c” causes the str_Printf(...) function to go to the byte
address pointed to by the pointer and print the character inside that byte
memory location. To illustrate using our previous example, we write,

to(buffer); print(™1234");

ptr : str Ptr(buffer);

LU
17

- ("buffer: ™):
intf({aptr, "%c™);

mn

print ("\n");
print ("ptr new: ",ptr,"

print ("ptr old: ",ptr,"\n

The output of this code snippet would be:

buffer: 1
ptr new: 17

We see here again that the pointer is automatically advanced. To print the
three remaining characters we write,

Page 6 of 9

www.4dsystems.com.au

APPLICATION NOTES

4D-AN-00194

mn

rptr,

LU
)

g Ty,
sC)

Y

w1t) g

The output of the above snippet would be:

huffer:-l
ptr new: 17
34

The Designer project for the discussion on the “%c” format specifier is
“stringsBasics4.4dg” (attached).

Dynamic Construction of the Format Specifier

The format specifier argument of the str_Printf{...) function can also be
a word-aligned string pointer, allowing dynamic construction of the
printing format. To illustrate using one of our previous examples, we
write,

var buffer|
var ptr;
var format|

str Ptr(buffer);

format) ;

Note that another word array, format, was declared.

var format|

To this the literal string constant “%s” was streamed.

to(format) ; print /|

And then format, which is essentially a word-aligned pointer to the
stored string “%s”, was used as the second argument of the
str_Printf(...) function.

str Printf (sptr, format):

Page 7 of 9

www.4dsystems.com.au

APPLICATION NOTES 4D-AN-00194

The output of the above code snippet would be: The Designer project for the discussion on dynamic construction of the

buffer: 1234 format specifier is “stringsBasics5.4dg” (attached). Although the
examples are simple, the ability to construct a format specifier
dynamically can be a powerful tool.

Run the Program

For instructions on how to save a Designer project, how to connect the
target display to the PC, how to select the program destination, and how to

compile and download a program, please refer to the section “Run the

. Program” of the application note
If we were to stream “%c” instead of “%s” to format,

ormat); print("%c") Designer Getting Started - First Project

The output would be: For instructions on how to save a ViSi project, how to connect the target
puffer: 1 display to the PC, how to select the program destination, and how to
compile and download a program, please refer to the section “Run the

Program” of the application note

ViSi Getting Started - First Project for Picaso and Diablo16

The ulLCD-32PTU and ulLCD-35DT display modules are commonly used as
examples, but the procedure is the same for other displays.

Page 8 of 9 www.4dsystems.com.au

http://www.4dsystems.com.au/appnote/4D-AN-00117/
http://www.4dsystems.com.au/appnote/4D-AN-00119/

APPLICATION NOTES 4D-AN-00194

Proprietary Information

The information contained in this document is the property of 4D Systems Pty. Ltd. and may be the subject of patents pending or granted, and must not be

copied or disclosed without prior written permission.

4D Systems endeavours to ensure that the information in this document is correct and fairly stated but does not accept liability for any error or omission. The
development of 4D Systems products and services is continuous and published information may not be up to date. It is important to check the current position
with 4D Systems.

All trademarks belong to their respective owners and are recognised and acknowledged.

Disclaimer of Warranties & Limitation of Liability

4D Systems makes no warranty, either expresses or implied with respect to any product, and specifically disclaims all other warranties, including, without
limitation, warranties for merchantability, non-infringement and fitness for any particular purpose.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates.
It is your responsibility to ensure that your application meets with your specifications.

In no event shall 4D Systems be liable to the buyer or to any third party for any indirect, incidental, special, consequential, punitive or exemplary damages
(including without limitation lost profits, lost savings, or loss of business opportunity) arising out of or relating to any product or service provided or to be
provided by 4D Systems, or the use or inability to use the same, even if 4D Systems has been advised of the possibility of such damages.

4D Systems products are not fault tolerant nor designed, manufactured or intended for use or resale as on line control equipment in hazardous environments
requiring fail — safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air traffic control, direct life
support machines or weapons systems in which the failure of the product could lead directly to death, personal injury or severe physical or environmental
damage (‘High Risk Activities’). 4D Systems and its suppliers specifically disclaim any expressed or implied warranty of fitness for High Risk Activities.

Use of 4D Systems’ products and devices in 'High Risk Activities' and in any other application is entirely at the buyer’s risk, and the buyer agrees to defend,
indemnify and hold harmless 4D Systems from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or
otherwise, under any 4D Systems intellectual property rights.

Page 9 of 9 www.4dsystems.com.au

